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Abstract 

The coordination of spatially distributed systems of cooperating agents, which 
perform an assigned mission in the presence of uncertainty and system faults, is an 
important emerging technology. The actions and health of these distributed systems 
depend upon the information that can be communicated and the knowledge of the current 
capabilities of all cooperating agents. Methodologies for the distribution of estimation 
and redundancy management fanctions over the dynamic network of cooperating agents 
were developed, leadmg to effective team strategies 

Progress has been made on various aspects of the distributed systems problem. 
From the fundamental level we investigated the decentralized control problem with 
constrained communication. In parallel the allocation of transmit power in wireless 
networks was a focus of study into the decentralized control problem because it has a 
simple structure and the information communicated is constrained. In the area of health 
monitormg new robust analytical redundancy methods have been developed which 
detects, identifies, and reconstructs sensor, actuator and plant faults. A robust multiple- 
fault filter is developed based on a performance me^ure from which the desired 
detection subspaces are approximately constructed. This detection filter formulation, 
which includes uncertainty, is the bases for single-fault time-varying, decentralized 
detection filtere, and fault magnitude reconstruction. An innovative application of 
distributed detection filters methodology is to the target track association problem. 
Finally, the distributed estimation problem was addressed by considering elements of the 
relative navigation problem among distributed vehicles. Exact statistical solutions to the 
pseudorange equations in GPS and an efficient nonlinear filter based on multiple 
hypothesis sequential probability ratio tests for resolving the integer ambiguity in 
differential carrier GPS were developed and extended. 

Accomplishments 

The following accomplishments in the study of cooperative agents are divided into three 
categories; decentralized control, robust fault detection filters for distributed analytic 
redundancy management systems, and nonlinear estimation applied to relative GPS 
navigation among moving vehicles. 



1.        Decentralized Control 

1.1 A Stochastic Decentralized Control Problem with Noisy Information 
A simple decentralized stochastic control problem is considered where the non-classical 
nature of the information pattem is induced by the uncertainty of the information 
transmission in the system [1, Appendix A]. This is in fact a reformulation of the 
Witsenhausen counter-example, where the first station is allowed to send its' information 
to the second station through a noisy channel. Non-convexity of the problem in this new 
formulation has been established and it is shown how this formulation relates to a 
cl^sical problem and the Witsenhausen problem, respectively, when the transmission 
noise intensity goes to zero or infinity. Assuming a small transmission noise intensity, an 
asymptotic approach is then used in order to find an approximated cost. A necessary 
condition for asymptotically optimal strategies has been obtained using a variational 
approach and it is shown that the linear strategies, with slightly different coefficients than 
the noiseless transmission case, satisfy the necessary condition. 

1.2 Application to Power Allocation In Cellular Radio Networks 
A distributed Dynamic Channel and Power Allocation (DCPA) scheme based on a novel 
predictive power control algorithm is proposed [2, Appendix B]. Power control is 
considered an efficient scheme to mitigate co-channel and multiple-access interference in 
cellular radio systenw. Various approaches have been proposed in recent years to design 
power control algorithnw. We focus on the feedback algorithms that are b^ed on Signal 
to Interference plus Noise Ratios (SIR-based algoritimis). We review SIR threshold 
approaches and then discuss how power control design can be formulated as a 
decentralized regulation problem. We use a robust control fi-amework to analyze global 
stability of a network on a single channel. We obtain a sufficient condition, which 
guarantees that the deviations of the power levels form their optimal values remain 
bounded, even when the channel gains change, as long as the network stays feasible [3, 
Appendix C]. The Minimum Interference Dynamic Channel Assignment algorithm is 
employed, while simple Kalman Filters are designed to provide the predicted 
measurements of both the channel gains and the mterference levels, which are then used 
to update the power levels. Extensive computer simulations are carried out to show the 
improvement in performance, under the dynamics of user arrivals and departures and user 
mobility. It is shown that the number of dropped calls and the number of blocked calls 
are decre^ed while, on average, fewer channel reassignments per call are required [2, 
Appendix B]. 

1.3   Periodic Control 

A n test is presented for determining when a controller with periodic gains is superior to 
a LTI compensator for a class of LQ strong stabilization problems [4, Appendix D]. It 
has been noted that only strongly stabilizing compensators can stabilize a certain type of 
decentralized system. For systems with stricfly proper transfer functions, it is proven 
that stable high frequency periodic controllers based on weak variations about the LTI 



case cannot give better performance than stable LTI compensators. In the development, a 
means to evaluate the second partials of fimctions with respect to matrix valued 
parameters is introduced. These techniques can be trivially modified to deal with 
problems involving optimizing decentralized controllers for systems with fixed modes. 

2.     Fault Detection and Distributed Detection Filters 

2.1     A Generalized Least-Squares Fault Detection Filter 
A fault detection and identification algorithm is determined from a generalization of the 
le^t-squares derivation of the Kalman filter [5, Appendix E]. The objective of the filter 
is to monitor a single fault called the target fault and block other faults, which are called 
nuisance faults. The filter is derived firom solving a min-max problem with a generalized 
least-squares cost criterion which explicitly makes the residual sensitive to the target 
fault, but insensitive to the nuisance faults. It is shown that this filter approximates the 
properties of the classical least-squares fault detection filter such that in the limit where 
the weighting on the nuisance fault is zero, the generalized least-squares fault detection 
filter becomes equivalent to the unknown input observer where there exists a reduced- 
order filter. Filter designs can be obtained for both linear time-invariant and time-varying 
systems. 

2.2 Robust Multiple-Fault Detection Filter 
A new robust multiple-fault detection and identification algorithm is proposed [6, 
Appendix F]. Different from other algorithms which explicitiy force the geometric 
structure by using eigenstructure ^signment or geometric theory, this algorithm is 
derived by solving an optimization problem. The output error is divided into several 
subsp^es. For each subspace, the transmission from one fault, denoted the associated 
target fault, is maximized, and the fransmission from other faults, denoted the associated 
nuisance fault, is minimized. Therefore, each projected residual of the robust multiple- 
fault detection filter is affected primarily by one fault and minimally by the otiier faults. 
The fransmission from process and sensor noise is also minimized so that the filter is 
robust with respect to these disturbances. It is shown that this filter approximates the 
properties of the restricted diagonal filter of which the Beard-Jones detection filter is a 
special case. In the limit where the weighting on each associated nuisance fault 
transmission goes to infinity, the geomefric structure of the restricted diagonal detection 
filter is recovered. When it is not in the limit, the filter only isolates the faults within 
approximate invariant subspaces. This new feature allows the filter to be potentially 
more robust since the filter structure is less constrained. Filter design can be obtained for 
both time- invariant and time-varying linear systems. 

2.2  Optimal Stochastic Fault Detection Filter 
A fault detection and identification algorithm, called optimal stochastic fault detection 
filter, is determined [7, Appendix G]. The objective of the filter is to monitor a single 
fault called the target fault and block other faults, which are called the nuisance faults in 
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the presence of the process and sensor noises. The filter is derived by maximizing the 
transmission from the target fault to the projected output error while minimizing the 
transmission from the nuisance faults. Therefore, the residual is affected primarily by the 
target fault and minimally by the nuisance faults. The fransmission from the process and 
sensor noises is also minimized so that the filter is robust with respect to these 
disturbances. This filter is a special case of the detection filter of [6, Appendix F]. It is 
shown that this filter approximates the properties of the classical fault detection filter 
such that in the limit where the weighting on the nuisance fault fransmission goes to 
infinity, the optimal stochastic fault detection filter becomes equivalent to the unknown 
input observer. However, the nuisance fault directions and their associated invariant zero 
directions must be included in the invariant subspace generated by the optimal stochastic 
fault detection filter. The asymptotic behavior of the filter as the weighting on the 
nuisance fault fransmission becomes large is determined by using a perturbation method 
and it is shown that the geometric structure of the unknown input observer is recovered. 
Filter designs can be obtained for both time-invariant and time-varying systems. 

2.3 Fault Reconstruction from Sensor and Actuator Failures 
An approach for reconstructing sensor and actuator faults from the residual is proposed 
[8, Appendix H]. The transfer matrix from the faults to the residual is derived in terms of 
the eigenvalues of the fault detection filter associated with the invariant subspaces of the 
fault and the invariant zeros of the faults. For each fault, all possible fault reconstruction 
processes are derived parameterized by applying a projector to the fransfer matrix and 
taking its inveree. Then, the optimal fault reconstruction process is determined by 
minimizing the ratio of the Hz norm of the projected transfer matrix from the disturbance 
to the H2 norm of the projected transfer matrix from the fault. For the existence of the 
fault reconstruction process, the invariant zeros of the fault have to be in the left half 
plane. Furthermore, for reconstructing a sensor fault, the system has to be detectable 
with respect to the other sensors. 

2.4 A Decentralized Fault Detection Filter 
The decenfralized fault detection filter has a stracture that results from merging 
decenfralized estimation theory with the game theoretic fault detection filter [9, Appendix 
I]. A decentralized appro^h may be the ideal way to health monitor large-scale systems, 
since it decomposes the problem down into (potentially smaller) "local" problems. These 
local results are then blended into a "global" result that describes the health of the entke 
system. The benefits of such an approach include added fault tolerance and easy 
scalability. An example given at the end of the paper demonstrates the use of this filter 
for a platoon of cars proposed for an advanced vehicle control system. 

2.5 Application of Detection Methods to Target Association 
A residual-based scheme for solving the radar track association problem using bearings- 
only measurements is developed [10, Appendix J]. To accomplish track association 
between two stations, we analyze the residuals of a bank of nonlinear filters called 
modified gain extended Kalman filters (MGEKFs). Once fracks have been ^sociated 
between two stations, tracks from additional stations may be associated with tracks from 
the first two stations by checking algebraic parity equations. Traditional frack association 



methods rely on the local stations' estimated target positions and error variances, which 
may be quite inaccurate when using bearings-only measurements. Our method bypasses 
this difficulty, since our filters use raw data from two stations. An example illustrates the 
effectiveness of our methods. 

3   Nonlinear Estimation Applied to Relative GPS Navigation 

3.1 Exact Statistical Solution of Pseudorange Equations 
Although the exact GPS solution proposed by Bancroft is nonlinear, it may be 
manipulated into a linear form when 5 or more satellites are visible [11, Appendix K]. 
This linear form is exact, as opposed to the linear solution obtained via repeated 
linearization in the iterated least squares (ILS) method. By virtue of this exactness, the 
solution of the linear form is always the true user position, while the ILS may converge to 
an incorrect solution (this is especially common when the GPS user is in space). 

When the measured pseudoranges are noisy, the linear structure ensures that the position 
estimate will converge to the correct value and that the error covariance of the estimate is 
known, guarantees that have not been found for nonlinear estimators that use the Bancroft 
solution directly. The conversion to the linear form excludes information present in a 
single scalar nonlinear measurement equation. We demonstrate several procedures for 
refining the linear estimate with this remaining information. In addition, we show that 
the methodology developed for direct GPS solutions can be applied to create linear direct 
methods for differential GPS problems. 

3.2 Multiple Hypothesis Sequential Probability Ratio Teste for Resolving Integer 
Ambiguity in GPS 

Two statistical techniques appropriate for the "validation" of integer ambiguities and the 
detection of cycle slips are developed [12, appendix L]. The multiple hypothesis Wald 
sequential probability ratio test (SPRT) can find the conditional probability that each set 
of integer biases under consideration is the true bias condition. The multiple hypotbesis 
Shiryayev SPRT determines the conditional probability that the integer biases have 
jumped from the nominal bias condition to each member of a collection of other bias 
conditions. Hence, the Wald SPRT is a method for validating the integer ambiguities 
during the initial ambiguity resolution, while the Shiryayev SPRT can be used to monitor 
for cycle slips. Each of these multiple hypothesis SPRTs (MHSPRTs) makes use of two 
me^urement residuals. One is geometric combination of the carrier phase 
measurements, and the other is generated by differencing the carrier phase measurements 
with code measurements. 

Prior work on cycle slip monitoring has focused solely on the detection of the occurrence 
of a cycle slip in the fittest time, balanced against the probability of issuing a false alarm. 
Once a disruption has occurred, the ambiguity resolution process must restart from 
scratch. The Shiryayev SPRT bypasses this problem, m it announces the location of the 
biases after the jump, in addition to the time of the cycle slip. The calculations for the 
MHSPRTs are not linked to any particular distribution, unlike prior efforts. Only the 
probability density functions of the measurement residuals are required.   Hence, the 



techniques can correctly compensate for non-Gaussian errors in measurement such as 
multipath. For each hypothesis under consideration, the MHSPRTs yield the probability 
of that hypothesis being the correct one. The "state" of the MHSPRT recursions is the 
vector of all of these probabilities. Information from past measurements is embedded in 
this state. This recursive, probabilistic framework makes it very straightforward to add 
new hypotheses into the set of possible bias conditions while retaining information from 
prior measurements. In contrast, there is no way to do this for other techniques, since 
they are based on cumulative sums. Results from successful simulations and field 
experiments show the efficacy of these techniques. 
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A STOCHASTIC DECENTRALIZED CONTROL PROBLEM WITH 
NOISY COMMUNICATION* 

KAMBIZ SHOAMNEJADt, JASON L. SPEYER*, AND lOANNIS KANBLLAKOPOULOSS 

Abstract. A simple decentralized stochastic control problem is considered where the nonclassical 
nattire of the information pattern is induced by the uncertainty on the information transmission in 
the system. This is, in fact, a reformulation of the Witsenhausen counterexample, where the first 
station is allowed to send its information to the second station through a noisy channel. Nonconvexity 
of the problem in this new formulation has been established, and it is shown how this formulation 
relates to a classical problem and the Witsenhausen problem, respectively, when the transmission 
noise intensity goes to zero or infinity. Assuming small transmission noise intensity, we then use an 
asymptotic approach in order to find an approximated cost. A necessary condition for asymptotically 
optimal strategic has been obtained using a variational approach, and it is shown that the Unear 
strategies, with slightly different coefficients than the noiseless transmission case, satisfy the necessary 
condition. 

Key words. optimaJ stochastic control, decentraUzed systems, asymptotic analysis 
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1. Introduction. Coordinating and controlling dynamic systems in spatial net- 
works has always been a challenging problem for system designers. It is now attracting 
more attention as varioi:^ new applicatioi^ are emerging in a very wide range from au- 
tonomous vehicles in formation to flow and congestion control in computer networls. 
However, there are still some major difficulties in dealing with such systems. The 
main characteristics of any decentralized system is that the information is distributed 
among different stations and the performance of the system depends highly on the 
corresponding information pattern, i.e., who knows what and when. The stations may 
communicate with each other p<Msibly by signaling through noisy channels. Even 
though there might be some physical constraints on the information structure of the 
system (e.g., locatioiK of the sensors, the actuators, and the transmitters), in general, 
an optimal information pattern should be obtained. Then, based on the locally avail- 
able information, a set of coordinated local strategies should be designed in order to 
achieve a common objective. In many cases, however, we will end up with nonconvex 
functional optimization problems, which are iMually very difficult to solve. 

One such class of problems is when a decentralized system has a nonclassical 
information pattern which is not partially nested. The information pattern is called 
nonclassical when the dtetributed stations do not have access to the same information 
and/or some stations do not have perfect recall (i.e., they Icwe information). Moreover, 
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a nonclassical information pattern is not partially nested when some stations cannot 
reconstruct the previous actions of other stations which have affected their own local 
information. Unfortunately, this happens in many decentralized systems. 

In 1968, Witsenhausen provided a simple example in [1] in which there are only 
two stations, the dynamics are linear, the underlying uncertainties are additive and 
Gaussian, and the cost is quadratic. The information pattern, however, is nonclassical. 
This example motivated much research on the links between decentralized stochastic 
control problems and team theory and the effects of different information patterns on 
decentralized systems. Although it is a very simple example, it demonstrates the main 
difficulties induced by nonclassical information patterns. In this example, one station 
acts first and affects the information available to the next station, while there is no 
way for the second station to determine the action of the firet station. The existence 
of the optimal design was established in [1], where a nonlinear set of strategies was 
also proposed which showed that no affine strategy could be optimal. 

This seemingly simple example, which is also called Witsenhausen's counterexam- 
ple, turned out to be extremely hard. It is still outstanding after more than 30 years. 
It was later shown in [2] that when the uncertainty on the information available to 
the first station is small, linear strategies would still be optimal over a large class of 
nonlinear strategic. Intuitively, when the uncertainty on the information of the first 
station is small, the second station will also be able to guess what that information 
was. Therefore, since the problem is cooperative in the sense that the stations are 
aware of each others' strategic, the second station can almost reconstruct the action 
of the first station, and there is no need for any kind of signaling among the stations 
through the dynamics of the system. In Witsenhausen's problem, the nonclassical 
nature of the information pattern is a result of the fact that the information available 
to the first station is completely inaccessible for the second station. However, recent 
advances in computing and communication technologies make it pcwsible for the sta- 
tions in many decentralized systems to communicate different pieces of information. 
But communications can never be perfect, and there is always some uncertainty in- 
volved. Unfortunately, such uncertainty will again induce a nonclassical natiire on 
the information pattern of the system. 

In this paper, we reformtdate Witsenhausen's problem by allowing the first station 
to communicate its information with the second station through a noisy channel. Then 
we show that as long as there is noise in the transmission, the main difficulties will 
persist. Specifically, the cost might still be nonconvex with respect to the strategies. 
We then consider the two lunit cases where the traiamission uncertainty becomes 
either very large or negligible. We show how this new formulation covers a wide 
range of problems, from the classical linear quadratic Gaussian (LQG) problem to 
the Witsenhausen counterexample. 

When the transmission noise intensity is small, one would expect the optimal 
strategies to be very close to the corresponding strategies for the noiseless transmission 
case. Our next objective in this paper is to investigate this case through an asymptotic 
analysis. 

In section 2, we present the problem formulation. In section 3, we obtain an alter- 
native form for the performance index, which clearly shows the possible nonconvexity 
of the cost with respect to the strategies. In section 4, we consider the two limit 
cases, i.e., when the transmission noise intensity goes to zero or infinity. In section 
5 we assume a small uncertainty on the transmission and approximate the cost by 
expanding it in terms of the small transmission noise intensity. In section 6, we use 
a variational approach in order to find a necessary condition for the strategies that 
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minimize the approximated cost. As we shall see, we will actually have a singular 
optimization problem. We then show that the asymptotically optimal strategies can 
still be linear with slightly different coefficients than the corresponding strategies for 
the noiseless transmission case. We provide concluding remarks in the final section. 

2. Problem description.  Consider a two-stage stochastic problem with the 
following state equations: 

(2.1) a;i =a;o + «i, 

(2.2) a;2 = :ci - ua, 

where XQ is the initial state, which is assumed to be a zero mean Gaussian random 
variable with variance o-|. The information pattern of the system is specified by the 
following output equations: 

(2.3) zi = 

(2.4) Z2 = 

where V2 is the measurement noise for the second station, which is also assumed to be 
a zero mean Gaussian random variable with unit variance. As we can see, the infor- 
mation available to the firat station is being transmitted to the second station, and the 
communication imcertainty is modeled l^ an additive Gaussian noise Vf-^M (O, e^). 
Also, xo, «2, and vt are all assumed to be independent of each other. It is clear that 
we have simply modeled the received information signal as the transmitted signal 
plus the Gaussian transmission noise. While this model can be quite realistic for ana- 
log communication systems, it may not be well justified when digital communication 
is used. In digital communication systems the signal is quantized, coded, and sent 
through the channel. Still, the channel noise may realistically be assumed to be addi- 
tive and Gaussian, but sophisticated modulation and coding schemes make it difiicult 
to assimie a simple additive Gai^sian imcertainty for the received information signal. 
However, if we try to incorporate the quantization effects along with the bit error 
probability distribution for some good coding and modulation schemes in order to 
model the communication uncertainties, we will end up with models which could still 
be approximated, to some degree, by simple additive Gaussian models. Moreover, 
since there are already major difficulties in deaUng with decentralized nonclassical 
information patterns, using more complex models for communication uncertainties 
may not seem very reasonable at this point. FHirthermore, we believe that the results 
obtained under such a simplifying assumption would still serve as a guideline for find- 
ing the true nature of the optimal decentralized strategies. The objective is now to 
design the control strategies 71 and 721 

(2.5) «i =71(^1). 

(2.6) U2 = 72 M, 

in order to minimize the cost function 

(2.7) J = E[k%l+xl], 

where fc^ > 0 k a given constant. Note that this is a sequential stochastic control 
problem in the sense that the second station acts after the first station. In other words. 
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-S = SUn -Ti, - Gt(DlClV-'C2D2r'DlClV-'Ci3 

+ Wii - Fu - G^iDlClV-'C^D^r^DlClV-'CifS 

+ Sl-NtQiNj + G,{i)IClF-iC2l>2)-'Gl]S - CWV-'HCi (23) 

By substituting (21) and (22) into (20a), the reduced-order limiting generalized least-squares fault 
detection filter is 

l.={^ii-r,i)^%+MiM + [Gi(i)|ClF-'C2D2)-'DlClF-' + S-iClHTF-'ff]Cv-C,,|i) 

(24) 

Note that Fi, can be computed a priori. In the limit, the residual (3) becomes 

r = H(y- Cin,) (25) 

because HCj = 0 from (21) and Ker H = Ker S. 

7. EXAMPLE 

In this section, two numerical examples are used to demonstrate the performance of th 
generalized least-squares fault detection filter. In Section Jl, the filter is applied to a ti 
-invariant system. In Section 7.2, the filter is applied to a time-varying system. 

e 
me 

7.1. Example I 

In this section, two cases for a time-invariant problem are presented. The first one shows that the 
sensitivity of the filter (8) to the nuisance fault decreases when >- is smaller. The second one shows 
that the sensitivity of the reduced-order Hmiting filter (24) to the target fault increases when Q, is 
larger. The system matrices are 

A = 

0 3   4 

1 2   3 

0   2   5 

C = 
1    0" 
0    1 ,   F,= 

"o" 
0 ,      ^2 = 

"5" 
1 

.1. _1. 

In the first case, the steady-state solutions to the Riccati equation (9) are obtained with 
weightings chosen as Qi = 1, Q2 = 1, and F = J when y = 10~* and 10"^ respectively. The top 
two figures of^Figure 1 show the frequency response from both faults to the residual (3). The left 
one is y = 10 *, and the right one is y = 10"*. The soMd lines represent the target fault, and the 
dashed lines represent the nuisance fault. This example shows that the nuisance fault transmission 
can be reduced by using a smaller y while the target fault transmission is not aflected. 

In the second case, the steady-state solutions to the reduced-order limiting Riccati equation 
(23) are obtained with F = 10 *J when Qi = 0 and 0.0019, respectively. The lower two figures of 
Figure 1 show the frequency response from the target fault and sensor noise to the residual (25). 
The left one is Qi = 0, and the right one is gi = 0.0019. The solid lines represent 
the target fault, and the dashed Knes represent the sensor noise. This example shows that the 

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757 
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f•nmw B l&HJ) 
f wraat * lO^^i 

■■0 
Ql=0 

0 

.10 

\ 

«1 ^ 

Figure 1. Frequency response of the residual. 

se„s,t,v.ty of the filter to the target fault can be enhanced by using a larger Q,. The sensor noise 
ransm,ss,on also increases because part of the sensor noise comes through the same direction as 
he target fault. However, the sensor noise transmission is small compared to the target fault 

transmission. In this case, the nuisance fault transmission stays zero and is not shown in these 

i^^!'Jl% t- ir ^' ^ °' ?' Seneralized least-squares fault detection filter is similar to 
Reference [2] which does not enhance the target fault transmission. 

7.2. Example 2 

In this section, the filter (8) and the reduced-order limiting filter (24) are applied to a time-varying 
system which ,s from modifymg the time-invariant system in the previous section by adding somf 
time-varymg elements to A and F, matrices while C and F, matrices are the same- 

-cost   3-|-2sint 4 

1 2 3-2cost 

5 sin f 2 5 -1- 3 cos t 

5 — 2 cost' 

1 

1 -f- sin r 

The Riccati equation (9) is solved with Q, = 1, 0^ = 1. F = / and y = 10"^ for r6[0, 25] The 
reduced-order limiting Riccati equation (23) is solved with the same Q, and V. Figure 2 shows the 

f^tr^ZTZl 'TU"TU°^ *' '■'''^""'^ ^^'" *^" '^ "° '^^•t' ^ '^'Set fault and a nuisance 
fault, respectively The faults are umt steps that occur at the fifth second. In each case, there is no 
auft tranJSl .f f ^^ree figures show the residual (3) for the filter (8). There is a small nuisance 

fault transmission because (8) ,s an approximate unknown input observer. The right three fieures 
show the residual (25) for the reduced-order limiting filter'(24). Note thaftLe nufsIncS 
trammission is zero. This example shows that both filters. (8) and (24), work well for time-varyTng 

Copyright © 2000 John Wiley & Sons, Ltd. 
Int. J. Adapt. Control Signal Process. 2000; 14:747-757 
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,«lo' 

OJ 

0^ 

0.5 

10        IJ        20        25 
Turgcf fsolt 

r ̂ [r^ u 
0 3 10 U 20        25 

K r\ i\ ri 
0 5 10        IS        20        25 

Time (sec) 
NotlnlhelimiJ 

0,5 

5 10 15        20        25 
Targcc fault 

j 
[y-J 

■J 

0 S 10 IS 20 23 
j IQ-* Nuisance iKih 

5 10 15 20 25 
Tiitic (SK) 

In the Imit 

Figure 2. Time response of the residual. 

8. CONCLUSION 

The generalized least-squares fault detection filter is derived from solving a min-max problem 
which makes the residual sensitive to the target fault, but insensitive to the nuisance faults. In the 
limit where the weighting on the nuisance faults is zero, the filter becomes equivalent to the 
unknown input observer which places the nuisance faults into a minimal (C, ^)-unobservability 
subspace and there exists a reduced-order filter. Since the target fault is explicit in the problem 
formulation, the sensitivity of the filter to the target fault can be enhanced. Filter designs can be 
obtained for both linear-time-invariant and time-varying systems. 
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the order in which the stations apply their control actions does not depend on the 
uncertainties in the system. We see that the first controller has perfect information 
but its action is costly. In contrast, the second controller has inexpensive control but 
noisy information. Since the second station does not know what the first station knew, 
due to the transmission noise, we do not have perfect recall, and hence we still have 
a nonclassical pattern. If there was no transmission noise, we would have a classical 
information pattern for which the unique optimal strategies are known to be linear in 
the information. 

3. An alternative form for the performance index. In this section, we 
show how the performance index may be expressed in terms of the Fisher information 
matrix, which indicates that the cost may not be convex in the strategies. 

For simplicity, and similarly to the Witsenhausen problem, we define 

(3-1) / (zi) := zi + 7i (zi) =xo+ «i, 

(3-2) g (z2) := 72 M = U2 • 

Then the cost can be expressed as 

J = E[k%l+xl] 

= E [&2 (;5, - / (^,))2 + (/ (^^) _ g (^^))2j 

(3.3) ■.= J{f,g). 

If we fix the function /, the optimal strategy g will clearly be obtained as the condi- 
tional expectation, i.e.. 

(3-4) g* {Z2) = arg mm J (/, g)^E[f {zx) \z2 ]. 

Substituting the above equation back in the cost, we get 

J*{f):=J{f,g*) 

= k^E [{zx - / {zx)f] + E [(/ {zx) - g* (z2)f] 

(3-5) = k^E [{zx - f izi)f] + E [(/ (zi)f] - E [(g* (z,)f] , 

where we have used the orthogonality property of the conditional expectation 

(3.6) E[if(zt)-g*(z2))g*(z2)] = 0. 

It is important to note the minus sign in the third term in (3.5). As we shall see, 
this minus sign could indeed destroy the convexity of the cost with respect to the 
strategies. 

The objective is now to express the cost J*(/) in terms of only one strategy /. 
In doing so, we use the following lemma, which shows how g* (23) may be expressed 
in terms of information Z2 and its probability density function. 

LEMMA 3.1.  The optimal strategy g* (02) can he expressed os 

(3-7) g* (02) = ZT2 + ^— Inp (^2), 
OZ22 

where p (2:2) = p (021! ^22) is the probability density function for the information avail- 
able to the second station. 
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Proof. We have 

(3.8) 

g* {Z2) = I f {Zl) p (Zi \Z2 ) dzi 

^ J fizi)p(zi,Z2)dzi 

Jpizi,Z2)dzi 

where p{zi,Z2) is the joint probability density of zi and z^. At the same time, one 
can write 

(3.9) fizi)pizi,Z2) = Z22Pizi,Z2) + 5 p(zi,Z2). 
OZ22 

This can be shown as 

Z22P (Zl, Z2) + -K P {Zl, Z2) = Z22P (Zl, Z2) + 5 p (Z2 \zi)p(zx) 
OZ22 OZ22 

= 222P(«1,22)+Q P(«t,«2) 
OZ22 

Zl 

fizi) Pizi) 

( ^^    ^     f   1 (    {^21-Zxf       iZ22-f(zi)f\.     ,    . 
= Z2,pizuZ2)+^^ ^—exp [-^-^ - '- 2^^ 1 1 P(%) 

(3.10) =fiZl)p(zi,Z2), 

where we have used the specific form of the information available to the second station 
and the fact that «t ~ jV (O, e^) and V2 ~ M{Q, 1) are mdependent. By substituting 
for f(zi)p{zi,Z2) from (3.9) back in (3.8) and integrating with respect to zi, the 
exprrasion in (3.7) k obtained.       D 

As we shall see, when we try to express the performance index in terms of only a 
single strategy /, a Fisher information term comes up in the cost. Fisher information 
is originally obtained in the Cramer-Rao bound, which is a measure for the minimum 
error in ^timating a parameter based on the value of a random variable. However, by 
introducing a location parameter, an alternative form of the Fisher information may 
be defined for a random variable with a given distribution. This alternative form is, 
in fact, related to the entropy measure (see [3, p. 494]). We first present the definition 
for the Fisher information matrix. 

DEFINITION 3.2. The Fisher information matrm for a random vector Z is de- 
fined as 

(3.11) IfiZ):=E[V^Mp(z)-V,]npiz)], 

where p{z) is the probability density function for the random variable Z and Vz de- 
notes the gradient vector with respect to z: 

(3.12) V. 
d 

dzi 

d 
dZn 

where Zi is the ith component in the random, vector. 
We are now ready to present the alternative expression for the performance index. 
THEOREM 3.3. The performance index (3.5) can be written as 

(3.13) r(f) = k-'E [izi - f (zi)f] +1-If iZ2%^, 
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where If (22)22 **' »" /«<^*' *^e (2> 2) dement of the Fisher information matrix /or the 
random vector Z^. The subscript f indicates the fact that it actually depends on the 
form of the strategy f, which is present in the definition of z^ and wovid affect its 
probability density function. 

Proof Using (3.7), we first obtain E[{g*{z2)f]. We have 

(3.141 

and 

(3.15)  E Z22^—lnpiz2) 

E{zU=E :/(^i))']+i, 

I I Z2% -W— In (P (221, ^22)) P {Z21, ^22) dZ2ldZ22. 
J J_oo 0^22 

If we integrate by parts with respect to Z22, we get 

r+°° Q f+oa 
I Z2%-^—\n{p{z2i,Z2%))p(z2UZQz)dz22= ^22P(^21, «22)|t^-/   P («21, ^22) d2;22 
J_oo tr222 J_^ 

(3.16) =-p(^i), 

where Z22 is assumed to have a finite mean value, and therefore the first term become 
zero. Hence, 

(3.17) 

Therefore, 

(3.18) 

where 

E ^   1     r   % 

E [(5* (;^2))'] = -1 + S [(/ {z^)f] + If (^2),,, 

(3.19) Ifim 22 E 
.dz. lnp(j:2)j 

22 

Substituting (3.18) back in (3.5), we get (3.13) as an alternative form for representing 
the performance index.       D 

As we see, the cost is now expressed only in terms of one strategy /. Also, this 
somehow shows us that in order to minimize the cost, we need to get the lowest possible 
cost associated with the first station, while we transfer as much information as possible 
to the second station through the dynamics of the system. The possible nonconvexity 
of the cost with respect to / can also be seen from this alternative expression. It 
can be shown that the Fisher information term is a convex functional [4]. Therefore, 
1 — 1/ (2^2)22 is concave and the sum of a convex and a concave functional may not 
be convex. 

4. Limit cases. In this section we consider the two limit cases. Firat we consider 
the case where the transmission is noiseless, and then we investigate the case where 
the transmission noise intensity goes to infinity. 
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4.1. Noiseless transmission. Assume there is no uncertainty in transmitting 
information from the first to the second station, i.e., e = 0 and hence Z21 = zi. In this 
case, we have perfect recall and the information pattern is classical. We can write 

P M = P {Z21 ,Z22)=P (Z22 \Z21 ) p {zai) 

(4.1) =piz22Mpiz^) = ^eKp(-^^^i^)p(z^) 

Then, from (3.7), we have 

(4.2) g*iz2) = fizi) = fiz2i), 

which could directly be obtained from the original definition for g*, i.e., 

(4.3) g*iz2) = E[fizi)\z2] = fizi), 

because Zi is exactly known when Z2 is given.   Substituting this back in (3.5) and 
minimizing with respect to the strategy /, we have 

(4.4) 9*M = f(zi) = Zi, 

and hence 

(4.5) 71(^1) = 0, 

(4.6) 72(^2) = zu 

which is the unique linear set of optimal strategies.  This indeed turns out to be a 
very simple example of the well-known classical LQG problem. 

4.2. Infinite transmission noise intensity. Another limit case is when the 
transmfesion noise intensity increases to infinity. In this case, Z21 and 2122 become 
independent and we have 

(4.7) P{z2)=Piz21,Z22)=p{Z2l)p{z22) ■ 

The Pisher information term can now be written as 

f+00 

If{Z2)22=   I   I f gj-lnp(2:21,222)j   p(z2UZ22)dZ2ld. 

= /-oo    (i'"P^^   ''^'''^'^' tZ22 
'Z22 / 

(4.8) =1/(^22), 

which is indeed the Fisher information content of 022 only. Hence, 

(4.9) J*(/) = k^E [(^1 - / {z^)f\ +l-If (Z, &22J. 

This is the same result that was presented for the Witsenhausen counterexample in [1]. 
Intuitively, when we have infinite transmission noise intensity, we might as well deny 
the access to zi for the second station, and this is exactly the case in Witsenhausen's 
counterexample. The optimal strategies for this case are still unknown. Witsenhausen 
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showed that the optimal solution exists, even if XQ has a general distribution with a 
inite second moment [1]. He then showed that if one of the strategies is restricted to 
being affine, the other optimal strategy would also be affine. But then he provided a 
set of nonlinear strategies that could achieve a lower cost for some values of k^ and 
0-0. 

Different approaches have been taken in order to find the optimal strategies. As 
mentioned before, an asymptotic approach was used in [2] for the case where «TO is 
small. More recently, in [5], [6], [7] it was shown how a neural network, trained by 
stochastic approximation techniques, can be employed as a nonlinear function approx- 
imator in order to approximate / (^i). It was demonstrated that the optimal /* (zi) 
may not be strictly piecewise, as was suggested by Witsenhausen, but slightly sloped. 
Some researchers have tried to attack the problem numerically and use some sample 
and search techniques to find the solution. A discretized version of the problem was 
formulated in [8], which was later shown in [9] to be NP-complete and computation- 
ally intractable. It k recently asserted in [10] and [11] that a global optimum would 
be achieved by searching directly in the strategy space using the generalized step 
functions to approximate f(zi). 

So far we have shown, through a simple example, how any uncertainty in the 
transmission of information between the stations in a dktributed system can make 
the optimal control design very complicated and even intractable. Then, by consid- 
ering the two limit cases, we showed how our example covers a very wide range of 
scenarios. Namely, we saw that for the noiseless transmi^ion case, the unique optimal 
strategies, which are linear in the information, are easily obtained, whereas for the 
infinite transmission noise intensity, the optimal strategic are still unknown. Now a 
very feasible case to investigate is when the uncertainty on the information transmis- 
sion is small. In fact, when the transmission noise intensity € is small, one would still 
expect behavior similar to the noiseless transmission case for the optimal strategies. 
In the following sections, we consider this case. Namely, we assume a small intensity 
for vt. Under this assumption, we obtain the first few terms in the expansion of the 
performance index in terms of e. We then \jse the Hamiltonian approach in order to 
find a necrasary condition for the strategic that minimize the approximated cost. 

We show that the linear strategies, with slightly different coefficients than the 
corresponding coefficients for the noisetes transmission case, do indeed satisfy the 
nec^sary condition. This asymptotic analysis not only gives us insight on how the 
optimal strategic change as the transmission uncertainty is introduced but also pro- 
vide us with a better sense of the complexities in the dmiga procedure. 

5. An expansion for the cost. Assume that the first station communicates 
with the second station through a low noise channel. In other words, the transmission 
noise intensity e is assumed to be small. In this section, we will find an expansion for 
the cost in terms of e. For this purpose, we first find an expansion for the probability 
density function of the information available to the second station, i.e., p(z2)- Then 
we use (3.7) in order to find the corresponding expansion for g* (z^). By substituting 
back in (3.5), we will obtain the expanded cost only in terms of /. 

The probability density function for Z2 can be written as 

/+O0 

P(Z22,Z21,Zi)dzi 
■oo 

/+00 

Piz22\Z21,Zi)p(z2l\zi)p{zi)dzi 
-oo 
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+00 

983 

(5.3) 

(5.4) 

(5.5) 

/+00 

P (^22^1)P (Z21 \zi)p{zi) dzi 
■00 
/+c» 

P(z22MPvt (-^21 - Zi)p{zi)dzi 
■00 

=   f'^J^^J     (^22-/(^l-^ 
J-00   vSr 

v2ir<To 
exp 24 dzi, 

exp   - (221 - ZiY 
2e2 

where for (5.3) we have used the facts that the <r-fields generated by {^21,^1} and 
{zi,vt} are the same and zi, vt, and V2 are mutually independent. At this point, 
one should note that even though the joint probability density function p (022, ^21.21) 
can be explicitly expressed as in (5.5), introduction into the performance index shows 
that determination of / (zi) still requires averaging over all random variables. This 
is another way of looking at the effect of a nonclassical information pattern, which is 
not partially nested. We therefore decide to follow an asymptotic approach. 

For small c, we now approximate Inp^ (22) by considering only the first three 
terms of its expansion around e = 0. Namely, 

2 

(5.6) hipe (22) c; Inpo (z2) + g- Inpe (22] 

By making the change of variables 

(5.7) ey := zx - 221 

we can write p^ (22) in the following form: 

(5.8) Pe(22) = 
C+00      I 

£=0 
« + -Q^ Inpe (2:2] 

6=0 

cdy = dz\, 

^exp(-|-)%. 

For the first order term, we have 

d 
(5.12) 

dt 
Inpe (22 

1 a 
€=0 Po(22) de 

Pt M 
e=0 
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On the other hand. 

,=0     i-oo   5e \s/2w 

(2=22 -/(^2l))»/'(221) C 

2wero 
€=0 

-i    1 -I 
^   /+=*     1       _(^^g-/(^;i))'        1        /    ^2l\      -&     1 ii, 
+ /       -j=e = ,—       —# 1 ye  ^"3 —^^e" = % = 0. 

J-00   VSr ^/2^<To \   fff / ^/2i^ ^ 

00 

+00 

\/2^cro 

6     3% 

e   ^ dy 

(5.13) 

Therefore, 

(5.14) 
d€ 

InPe {Z2 = 0. 
€=0 

We could somehow expect this result. This is because we would expect the behavior 
of Pt (Z2) to depend only on the variance of the Gaussian transmission noise, i.e., e^. 
Using (5.14), we can now obtain the second order term as 

(5.15) ^lnp^{z2) 
&" 

,=0     Po(z2) de 
■Pe M 

€=0 

After some tedious but straightforward manipulations, we get 

32 

(5.16) 

Inpe (^2) = -/^ (221) + /" (Z2l) iZ22 - f (Z2l)) + f^ (Z2l) (^22 - / (Z2l)f 

+ 2/' iz2l) (^2 - / (Z2l)) (-^) - -L + 4- 

We can now obtain a second order approximation for Inp^ (22) by sutetituting the 
corresponding terms from (5,11), (5,14), and (5.16) back into the expansion (5.6). In 
the next step, we substitute the expaiwion for Inpe (^2) in (3,7) in order to find the 
corresponding expansion for g* (02). Remember that g* (2:2) is the optimal strategy 
for the second station, assuming that the first station has a fixed strategy 71 (zi) = 
f (zi) — zi. We have 

g* (Z2) = 222 + -K— Inp (22) 
0^22 

Z22 + ^—■ Inpo (^2) + e^-K-   , „ 2 
02:22 0^22 \de' 

Z22 - {Z22 - f (Z2l)) 

Inpe (22) 
€=0. 

(5,17) + £" /" iz2l) + 2/« (Z2l) (Z22 - f (Z2l)) + 2/' (z^i) f-^) 

Our goal is to get an expansion for the cost, which as we know from (3.5) can be 
written as 

(5.18) J*(/) = k-'E [(z^ - f izi)f] + E [(/ (zi)f] - E [{g* {z2)f] . 



DECENTRALIZED CONTROL WITH NOISY COMMUNICATION 

Using the expansion for g* {z^) from (5.17), we have 

985 

/ {Z2l)    f" (Z2l) + 2/^2 (^^j) (^^^ _ f (^^j)) + 2/' (;^2l)     -^ (5.19)  +2e2B 

where we have neglected the fourth order term in €. Substituting this expansion back 
in (5.18), we will obtain the following expansion for the cost: 

rU) = k^E [{z, - f iz^)f] + E [if izi)f] - E [if iz2i)f] 

(5.20)     - 2€^E f iZ2l) I f" iz2l) + 2/« {Z2l) iZ22 - f (^2l)) + 2/' (^2l) t))] 
Note that when the transmission is noiseless, i.e., e = 0 and therefore 2:21 = zj, we 
have 

(5.21) J*if)^k^E[izi-fizi}f], 

and / (^i) = zi is the obvious unique optimal solution. The above expansion, how- 
ever, is not exactly in our desired form yet. This ia because the third term on the 
right-hand side, which is an average over 221, still depends on e. We shall now rewrite 
the expansion in (5.20) by explicitly expressing the expectations based on the corre- 
sponding probability densities: 

r+oo 
[kHt-fit)f + fHt)]^^e ^odt 

/+00 

-00 
f^it)+2€' 

00 

+00      f+00 

(/(*)ro t)-2fit)f'it)- 
4Ji y/2witTi + e^) 

=W+«^) dt 

/       46V(t)/^(«) (r - fit)) ^e-'^^'i^-^e-^odtdr, 
-00  J-ix yZit yZiTUQ 

where we have substituted p(^2) = p{zm,Z2\) ^ Po (22) in the third term, since the 
higher order terms would be multiplied by €^ and would then be neglected. Now the 
third term turns out to be zero, because 

/+00   f-i 

■00 J—i 

+00     /.+£X3 , 5 , (2 

i^fit)fHt)iT - fit)) -±=e-''^V^^^e-^odt 
-00   ./-oo v2w %/2w(To 

4eV(«)f'(t)^^e ^o( (r - /(«)) 
-00 y2w(To V-00 

1 <T-/(t))- 

2w 
^-^dr   dt = 0. 

(5.23) 

At the same time, we can expand the probability density of 221 up to the second order 
in £. It is actually straightforward to obtain 

(5.24) 
1 

^2-Kial+e^) 
e  K'l+'=) 1 

sphiat^ 
e  ^0+^ 

1 
%/2ir<Tg (t=-4) 

Substituting (5.23) and the above expansion back in (5.22) and neglecting the higher 
order terms in e, we can finally get the following expansion for the cost: 
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r+oo 

rif) = [    I kHt-m) 1 

27r<To 
-e   ^'Sdt 

+00 

J~~oo 

(5.25)     := J* + 6= J*. 

mt)m^-2mf"it)+fit)^ ̂
o      J  -^SJ-ffo 

e  ^'Mt 

The objective is now to obtain the function /, which minimizes the above ap- 
proximated cost. In the next section, we use a variational approach in order to find a 
necessary condition for such a function and show how the linear strategic still satisfy 
this necessary condition. 

6. Minimizing the approximated cost. So far, we have obtained an expan- 
sion for the cost assuming that the transmission noise intensity is small. We have, in 
fact, approximated the cost by including only up to the second order term in e. We 
should now try to minimize this approximated cost in order to find the asymptotically 
optimal /*. Obviously, this strategy would be optimal only for a small transmission 
noise intensity. However, it would still be very helpful for the analysis of the behavior 
of the optimal strategies when we deviate a little bit from the classical information 
pattern by introducing a small communication uncertainty. 

We now use the Hamiltonian approach in order to find the necessary conditions 
for the function f{t), which minimizes our approximated cost. For simplicity, denote 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

xiit) 

X2it) 

Pit) := 

= /(«), 
= ii(t) = f(t), 
= *2(t)=*i(t) = /"(«), 

1 t2 
"3^ 

The Hamiltonian is then defined as [12] 

n = k^it- xi(t)fp{t) + ^ f4a;i(t)a;2(f)4 - 2a;i(t)«(t) -^ x\{tfl^^ p(t) 

(6.5)      -»-Ai(*)a;2(<)-l-A2(«)tt(t), 

where Ai and A2 are tlie Lagrange multipliera that should satisfy 

Ai(t) = — Wsi 

(6.6) 

(6.7) 

=   2fc2 {t-xM) - 4€'a;2(t)-% - %^xm-^-^ + l^uit)   pit), 

kit) = -n^ 
-4e^xiit)-^pit) - Ai(t). 

But as we can see, the Hamiltonian is linear in u{t) and we actually have a singular 
optimization problem. The singular surface will be characterized by setting W„ and 
its derivatives with respect to t equal to zero, that is. 

(6.8) W„ = -2e^xiit)pit) + kiit) = 0, 
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and 

(6.9) —W„ = -2€^xi(t)pit) - 2^xiit)pit) + kiit) = 0. 

Substituting p{t) = -prp(<) and also A2 from (6.7), we get 

(6.10) —Hu = -2€^X2it)p(t) - 2e^xi{t)^p(t) - Xi(t) = 0. 

Differentiating again and substituting Ai from (6.6), we have 

(6.11) 
df2 

t 
W„ = -^u{t)p(t) + Ae^^X2{t)p{t) - 2r (t - xx{t))p{t) = 0. 

Therefore, the corresponding u{t) on the singular surface is 

(6.12) u{t)=X2{t)^-^_(t-Xt(t)) 
2e2 

Note that the first order generalized Legendre-Clebsch condition, which is a necessary 
condition for u(i) to be minimizing on the singular surface, is also satisfied, namely, 

(6.13) 
d 

Therefore, the corrraponding xx{t) and X2{t), which minimize our approximated cost, 
should necessarily satisfy the following differential equations: 

(6.14) 

(6.15) 

Xi{t) = X2(t), 

i2(t)=X2(t)^-^(t-Xi(t)). 

Since e is assumed to be small, we may assume the following form in order to obtain 
the solutions for the above differential equations: 

(6.16) 

(6.17) 
xi(t) = ao(t) + c^02(t) + €^ai(t) + • • •, 
X2it) = bo(t) + eH2it) + e%(t) + • • •. 

Interestingly enough, by substituting the above Xi and X2 back into the differential 
equations and comparing the coefficients of the terms with the same order in c, we get 

(6.18)     xiit) = 1 k^4 + 2€^ Y     ( 2e' y 
+ •■ t = 

('+^)' 
Back to our original notation, we actually have 

(6.19) /W = zi 

(' + ^)' 
As we can see, the solution is still linear with a coefficient which is slightly different 
than the corresponding coefficient for the noiseless transmission case. Remember that 
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/ (^i) = Zi is the optimal solution when there is no transmission noise, and note that 
for e = 0 in (6.19) we get exactly the same solution as expected. Given the above 
function / (^i), the corresponding g* (23) can easily be obtained using (3.4). Note 
that it will also be linear because of the Gaussian assumption for the underlying 
uncertainties. 

We could somehow expect the optimal strategies to be linear from the beginning. 
As we mentioned in section 2, linear strategies were shown to be asymptotically opti- 
mal for the Witsenhausen example when the uncertainty on the information amiable 
to the first station is small [2]. In this paper, however, we have considered a refor- 
mulation of Witsenhausen's problem where the first station sends its information to 
the second station through a low noise channel. These two scenarios are somewhat 
similar. Namely, in both scenarios, the second station can determine the information 
available to the first station fairly accurately. Specifically, in the first scenario, the 
second station almost knows zi because of its small uncertainty, while in the second 
scenario it can determine zi from the information that is transmitted through a low 
noise channel. 

We would also expect the optimal strategies to approach the corresponding strate- 
gies for the noiselras transmission case as the value of zi and, in some sense, the 
signal-to-noise ratio increases. This does not seem to happen in the solution (6.19). 
One may justify this by looking at the exponential function in the cost (5.25). This 
function drives the integrand of the cost to zero exponentially fast for large values of 
zx. Therefore, the structure of the cost really does not force the optimal solution to 
approach f {z\) = z\ as zi increases. 

We shall now obtain the corresponding value of the cost. Substituting f{t) from 
(6.19) back into the cost (5.25), we get 

/+00 

-00 l4--2s2^ %/27ri 
'^odt 

TTffo 

+ C" 
/+00 

■00 

'l-C 

(l+^)' 

(1+^)"« (l+«j) %/^ao 
'Sdt 

(6.20) 2e^- 

where we have used 

(6.21) 

(6.22) 

+00 j2 
3^ 

J—00       ■s/2w<To 

/+0O I _  t' 

t^ e ^dt = 34. 
■00      v2Tr(To 

e  •"odt = (T0, 

3 

The optimal cost for the noisetes transmission case is zero. But if we use / (^i) = zi 
when the transmission is noisy, we get the following cost: 

(6.23) r(f) = 2e\ 
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In other words, if we fix the strategies to be the optimal strategies for the noiseless 
transmission case while introducing a small transmission noise, the increase in the cost 
will be proportional to the transmission noise intensity. However, if we use (6.19), we 
can indeed improve the cost by the fourth order in e. 

One should note from (6.19) and (6.20) that as the value of k'^trl increases, the 
asymptotically optimal solution approaches /(zi) = zi, and the change in the cost 
becomes smaller. In other words, increasing k^Og has an effect similar to decreasing 
the communication uncertainty. To explain this, we note from the performance index 
that increasing k^ implies a more expensive control action for the first station, which, 
in turn, results in smaller «i. This then implies that the information available to the 
second station is less affected by the action of the first station. At the same time, 
increasing o-g implies a higher level of uncertainty on XQ, which, incidentally, is the 
piece of information that is being transmitted between the stations. 

This brings up an example of a very interesting fundamental issue: the notion of 
information value and how it could be different for control and communication pur- 
ptmes. In fact, we know from information theory that a higher level of uncertainty for 
a piece of information implies a higher level of entropy and therefore a more valuable 
piece of information for transmission. On the other hand, however, a more uncertain 
piece of information would probably be tes valuable for control purposes and would 
have smaller effect on the control strategies. In other words, a control designer would 
probably be willing to spend less on installing transmitters on the stations for commu- 
nicating more uncertain pieces of information. While defining a notion for the value 
of information for control purposes has been occasionally addressed in the literature 
for quite a long time, it still remains an open problem. This is mostly because of the 
fact that the value of information for control purposes would highly depend on how 
the cost is defined for the control design, and this could be quite different in various 
applications. 

T. Concluding remarks. We analyzed an example of a decentralized stochastic 
system. This example mas a reformulation of the Witsenhausen counterexample where 
the first station was allowed to send its information to the second station through a 
noisy channel. The dynamics were linear, all the underlying uncertainties were as- 
sumed to be Gaussian, and the cost was quadratic. It was shown that as soon as 
any uncertainty is introduced in the communication among the stations, the infor- 
mation pattern again becomes nonclassical, which is not partially nested. We then 
showed how the performance index can be alternatively expressed such that the pos- 
sible nonconvexity of the ccet, with respect to the control strategies, becomes more 
transparent. Therefore, in general, we will end up with a nonconvex functional opti- 
mization problem when we try to obtain the decentralized optimal control algorithms. 
We then considered two limit cases. Namely, the case where there is no communi- 
cation uncertainty and the case in which the transmission noise intensity increases 
to infinity. The former case was shown to be a trivial example of a claraical LQG 
problem, whereas the latter case corresponds to Witsenhausen's counterexample, the 
optimal solution of which is still unknown. 

We then focused on the case where the communication uncertainty vas small. 
We followed an asymptotic approach where we approximated the cost based on its 
expansion in terms of the small transmission noise intensity. We showed how mini- 
mizing the approximated cost can be seen as a singular optimization problem. We 
then used a variational approach in order to find the necessary conditions for the 
asymptotically optimal strategies and showed that some reasonable linear strategies 
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would actually satisfy those conditions. We also provided some intuitive explanations 
for the behavior of those linear strategies and obtained the corresponding cost. 

Note that while we have focused on the reformulated Witsenhausen counterexam- 
ple, our main result is quite general. In fact, we have shown through an example that 
communication uncertainties in decentralized systems generally result in nonclassi- 
cal information patterns, which, in turn, can destroy the convexity of the associated 
functional optimization problems. Moreover, our approach is indeed a very general 
approach, which have been applied to various other problems before. More specifically, 
expanding a cost function in terms of some small parameters is a common practice in 
variational and perturbation-based approaches. Furthermore, using Hamiltonian ap- 
proach in order to obtain the necessary conditions for the optimal strategies obviously 
is not specific to our reformulated Witsenhausen problem. However, finding the exact 
function (6.19), which is obtained in closed form, satisfies the necrasary condition for 
optimality, and shows how the optimal strategies could change upon introduction of 
some communication uncertainty, could be very specific to our problem. 

All the derivations and the results in this paper show some of the difficulties 
involved in dealing with decentralized systems as soon as we deviate a little bit from 
a classical, or at least a partially nested, information pattern. On the other hand, 
even though we have modeled the communication uncertainty in the simplest possible 
way, we have tried to emphasize the role of communication uncertainties in generating 
such information patterns that are very difficult to handle. 

Finally, it should be mentioned that even though the optimization problem is 
generally difficult for this class of systems, in some applications one might be able to 
exploit the specific structure of the system in order to obtain some reasonably good 
suboptimal strategies, which could yield an acceptable performance. 
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Abstract 

It is known that dynamic allocation of channels and power in a BVequency/Time Division Multiple Access 

(FDMA/TDMA) system can improve performance and achieve M^er capacity. Various algorithms have 

been separately proposed for dynamic channel Msignment and power control. Moreover, integrated Dynamic 

Channel and Power Allocation (DCPA) algorithms have already been proposed based on simple power control 

algorithms. In this paper, we propose a DCPA scheme based on a novel predictive power control algorithm. 

The Minimum Interference Dynamic Channel Assignment algorithm is employed, while simple Kalman Filters 

are designed to provide the predicted measurements of both the channel gains and the interference levels, which 

are then used to update the power levels. Local and global stability of the network are analyzed and extensive 

computer simulations are carried out to show the improvement in performance, under the dynamics of user 

arrivals and departures and user mobility. It fe shown that call droppinp and call blockings are decreased 

while, on average, fewer channel re^signments per call are required. 

I. INTRODUCTION 

With the ever incressing need for capacity in mobile radio systems, optimal allocation of resources in non- 

uniform and non-stationary environments has become a great challenge. The fundamental objective is to 

accommodate as many users as pcmsible, subject to complexity and Quality of Service requirements, on a 

*This research was supported in part by the Air Bbrce Office of Scientific Eesearch under Grant Number P49620-00-1-0154 
+11500 W. Olympic Blvd., Suite 398, Los Angeles, CA 90064, (kaabizSinnovicswireless.com). 
+Box 951697, Los Angete, CA 90095-1597, (speyerBseas.ucla.edu). Author to whom correspondence should be addressed. 
SBOX 951594, Los Angeles, CA 90095-1594, (pottieeee.ucla.edu). 



limited available bandwidth by controlling undesired interactions among the users. One major interaction is 

the co-channel interference that every user generates for all other users, which are sharing the same channel. 

Various techniques have been developed to mitigate the effects of co-channel interference. Some of these 

techniques, such as sectorization and beamforming using smart antenna arrays, try to suppress interference, 

while others such as channel assignment techniques try to avoid strong interferers. 

Another well-known technique is to adaptively control the power levels of all the users in the network. The 

idea is to keep the power level for every user at its minimum required level according to the current channel 

conditions. This will eliminate unnecessary interference to other users and will also minimize the power 

consumption for the user. Various power control algorithms have been proposed in the literature [1]-[12]. 

Our first objective in this paper is to design a distributed predictive power control algorithm. We try to 

obtain accurate enough models for the slow variations in the channel gMns and the interference powers. We 

then dffiign Kalman filters for every user to obtain the one-step predicted values for both the interference level 

and the user's channel gain firom its intended base station. We try to tune the filters for a typical mobile radio 

environment and then conjecture and show through simulations that the filters are indeed robust under a broad 

range of parameters such as user velocities and shadowing correlation distances. The predicted measurements 

from the Kalman filters are then used in an integrator algorithm to update the power levels. 

Another approach to mitigate the co-diannd interference effects and increase the capacity is to avoid strong 

interferers by dynamically assigning the channels to the users. Various centralized and decentralized Dynamic 

Channel Assignment (DCA) schemes have been proposed in the literature [13]-[16]. 

It is believed that an aggressive DCA scheme can make an FDMA/TDMA system an interfemnce-limited 

syBtem, where the number of active users is mostly limited by the interference that the users cause on each 

other. On the other hand, power control schemes are known to be especially effective for interference-limited 

systems. This has initiated research on integrated distributed Dynamic Channel and Power Allocation (DCPA) 

schema [17]-[20]. In [17] a pilot based minimum interference DCA scheme is integrated with a fast fixed-step 

power control algorithm, while f^t fading and user mobility effects are neglected. In [18] three different 

types of minimum interference DCA algorithms are integrated with a slow integrator power control algorithm. 

Pedestrian mobUity along with a low power update rate are considered and it is again assumed that the fast 

fading effects are averaged out. In [19] a simulation study has been performed to investigate the joint effects 

of some simple SIR*-based and signal-level-based power control algorithms along with a minimum interference 

'SIR denotes Signal to Interference plus Noise Ratio throughout this paper. 



channel reassignment scheme. Fast fading effects are again neglected and low power update rates are assumed. 

Most DCPA schemes, however, only consider simple power control algorithms. Moreover, except for [18]- 

[19], other results neglect such effects as dynamics of user arrival or departures, user mobility, and base station 

hand-offs. Our main objective in this paper is to investigate the performance of our predictive power control 

algorithm when it is integrated with a minimum interference DCA scheme. We set up a system-level simulation 

platform, similar to the ones pr^ented in [17]-[18], to compare our predictive DCPA scheme with the one that 

uses a simple integrator power control algorithm with no prediction. Dynamics of user arrivals and departures, 

user mobUity and base station hand-offs are all considered in this study. Slowly varying flat Rayleigh fading 

effects are also considered in the simulations. 

The organization of the paper is as follows. In the next section, we present the system model and review 

some of the results in power control and dynamic channel jasignment. In Section III we elaborate on our 

predictive power control design. We explain how simple Kalman filters may be designed and implemented 

in order to obtain the predicted measurements of both the channel gains and the interference powers. We 

also show that the presented predictive power control algorithm satisfies the sufficient conditions for global 

stability of the network. In Section IV we describe in detaU our simulation models and in Section V we discuss 

the simulation results and compare the performance of our integrated predictive DCPA algorithm with the 

corresponding algorithm which uses no prediction. We show that, for a range of traffic loads, the number 

of blocked calls and dropped calls are decreased under our predictive DCPA scheme. Moreover, on average, 

fewer number of channel reassignments are required for every call, implying a more stable network. We will 

provide concluding remarks in the final section. 

II, SYSTEM MODEL, DYNAMIC CHANNEL ASSIGNMENT AND POWER CONTROL 

We consider a cellular system where the area under coverage te divided into cells and each cell h^ its own 

base station. All users communicate with their assigned base stations through a single hop. This is in contrast 

to ad hoc wireless networks where there is no fixed infrastructure and multi-hop communication is prevalent. 

We focus on a Requency/Time Division Multiple Access (PDMA/TDMA) system and only consider the 

co-channel interference among the users, i.e., no adjacent channel interference is assumed. Specifically, we 

assume a system-wide synchronization to the slot level so that each user will experience interference only from 

the users which are sharing exactly the same slot on the same carrier fi-equency. This assumption implies 

that large enough guard times per slot are assumed. We do not consider any blind slots in the system, that 



is, we assume that any slot in a frame can be used as a traffic channel. Blind slots can be avoided either by 

appropriate structuring of the control channel or by assuming that a call activity detection scheme is employed 

such that the users can temporarily discontinue their transmission in their active slots. Modifying the frame 

structure and considering some slots as the blind slots should not have major effects on our performance 

comparisons. 

We focus on the uplink channel, i.e., the channel from mobiles to base stations. Almost all the results 

and discussions, however, could similarly be stated for the downlink channel. We assume a fixed-power pilot 

(control) channel on the downlink. As we shall see, this channel facilitates Dynamic Channel Assignment 

(DCA) and can be used by the mobiles for initial base station assignments and base station hand-offs. 

We abstract the system architecture, as fer as modulation, coding, etc. are concerned, and consider SIR 

as the only measure for Quality of Service (QoS) in the system. This is a common practice, even though Bit 

Error Rate or R-ame Error Rate are usually seen as the ultimate performance measures. The reason is that, 

in general, higher SIR wiU result in better bit error rate performance and considering SIR as the measure for 

quality of service provides us with a more convenient platform for power control design. 

The received SIR on an assigned uplink channel for user t can now be written as: 

where pi is the transmit power for user i, gu is the channel gain (or attenuation) from user t to its intended 

base station (in the linear scale), py is the channel gain from user j to the intended base station of user i and 

T)i is the receiver noise intensity at the intended base station of user t. Also M is the total number of users 

sharing the channel. We now review the minimum interference dynamic channel assignment sdieme along 

with the main approaches for power control. 

A, Dynamic Channel Assignment 

Under a Dynamic Channel Assignment (DCA) scheme, all base stations have access to all the channels and 

djmamically assign the channels to the users based on the current traffic conditions. While DCA schemes are 

clearly more complicated, they usually result in higher capacity. 

We adopt a distributed Minimum Interference DCA scheme [15]. In this scheme, the new users will be 

assigned to the idle channels with minimum local mean interference, in the order they arrive. It was shown 

in [26] that when a new user is admitted to a power-controlled network, the optimal power level for the new 



user can be written as: 

„• = is°     ^» /,s 
ynn -i      7„„, 

where 7„ is the SIR threshold that the new user wants to achieve, '^mam is the maximum achievable SIR for 

the new user and J^) is the local mean interference plus noise level at the intended base station of the new 

user before it is admitted to the network. It is now clear that the minimum interference DCA scheme does 

indeed result in the minimum transmit power for the new user. 

Whenever the local mean SIR for a user drops below a given threshold while the user is transmitting at its 

maximum power level, a channel reassignment attempt is triggered and, if possible, the user is reassigned to 

the idle channel, which currently has the minimum local mean interference. Note that this is a distributed 

scheme, which, in general, is not globally optimal. Remember that any kind of global optimality in the channel 

assignments can only be achieved through centralized algorithms, which are usually impractical due to the 

excessive requirements for processing and also communications among the base stations. 

Another issue is call management and admission control. As we shall see, a network should be feasible for 

every user to be able to achieve its desired SIR threshold. If no admission control is employed, a new user could 

potentially force the network out if its feasibility region and hence rrault in dropping active calls. Therefore, 

an admission control mechanism is needed to adjust the trade-off between blocking new calls and dropping 

active calls. In [21] an admission algorithm was presented for a power controlled system, where the new users 

would increase their powers only in small steps. It was shown how this scheme could protect the quality of 

active links when new users arrive. Channel probing technique were later proposed in [22]-[24], where a new 

user would try to estimate the maximum SIR level that it can achieve by disturbing the network as little as 

possible. The user will then be admitted only if its maximum achievable SIR is above its desired threshold. 

Also a channel partitioning scheme was presented in [25| where a combination of dynamically allocated and 

fixed assigned channels are incorporated to develop a rapid distributed access algorithm. 

We adopt the simpler threshold-based implicit admission control scheme, presented in [18]. In this scheme, 

a new user with a desired SIR threshold 7^ will be admitted only if there exists an idle channel, on which 

it can adiieve an SIR threshold 7„eu„ which is higher than -ya by a given protection margin. The value of 

the protection margin for new users should be selected based on the trade-off between blocking new calls and 

dropping active calls. 

Moreover, a channel reassignment attempt will be tri^ered for a user if, while transmitting at the maximum 

power, its local mean SIR drops below a threshold 7m,„, which is lower than ja by another given margin. This 



margin is required to avoid excessive number of channel reassignments. The value of this margin should be 

selected according to the trade-ofF between quality of service and the average number of channel reassignments 

per call. Note that for channel reassignment, it is checked whether the user can achieve 7^ on the idle channel 

which currently has the minimum interference. Since ja < Jnew, this scheme clearly favors the active users, 

that are being reassigned, to the new incoming users. If a channel reassignment fails, the User stays on its 

old channel and the reassignment attempt is repeated every reassignment period (as long as r < fmin and 

P = Pmax) until the user is either successMly reassigned or dropped from the network. Finally, a user will be 

dropped from the network if its local mean SIR drops and stays below a threshold 7rfrop(< Jmm) for a given 

duration of time. 

B. Power Control 

While DCA schemes achieve higher levels of capacity by dynamically distributing the traffic across the 

channels, power control techniques focus on every channel and try to mitigate the co-channel interference by 

dynamically adjusting the power levels of the co-channel users at their minimum required levels. Therefore 

one can reasonably expect that integrating power control with DCA can achieve even higher levels of capacity, 

even though the capacity gains may not be exactly additive due to some redundancy between the two schemes 

[18]. 

A widely studied approach for power control is the SIR threshold approach, presented in [4], where the 

objective is for the SIR of each user in the network to be above a desired thr^hold, that is: 

^_       gup, 

A necessary and sufflceint condition for the existence of the optimal power levels p|, that satisfy the above 

set of inequalities, is called feasibility. In other words, a network of users is called feasible if every user can 

adiieve its d^ired SIR. It was shown in [4] that a network is feasible if and only if p{r{Z - I)) < 1, where 

■2 = (%] = lf^|> r = diag{7i,...,7M), U — [uj = [^], and I is the identity matrix, and p denotes 

the spectral radius of a matrix. Rirthermore, under the feasibility condition, the following simple iterative 

algorithm, which could be implemented in a distributed manner, would converge to the optimal power levels: 

Qii I Ipj I      gu ri{n) 

where Ji(n) is the total interference plus noise power at the receiver of the intended base station for user 

i.  Therefore, every user only needs a measurement of its own channel gain and its total interference plus 



noise in order to update its power level. Note that It{n) depends on the power levels of the users during the 

(n — l)-th power update period. Also no extra delays are assumed for processing and propagation. Various 

generalizations of this algorithms have been presented in the literature. A unified framework along with 

convergence analysis for some of these algorithms were presented in [5]. 

In most of these algorithms, it is assumed that all the channel gains stay constant for the duration of the 

convergence of the algorithm. Therefore, it is implicitly assumed that the fading rate of the channel is much 

slower than the power update rate. In other words, neither the channel gain variations due to user mobility 

and fading, nor the measurement errors are taken into account. It was recently shown in [6] that the optimal 

powers obtained from the SIR balancing approach, under constant gain assumptions, are very close to the the 

optimal powers that minimize the Rayleigh fading induced outage probability for every link. 

Some researchers have tried to analyze and possibly modify the power control algorithms to take into 

account the channel gain variations and the fading induced measurement errors. In [7] it was shown how the 

desired SIR for the users may be scaled up to guard against the user mobility effects. In [8] a simulation 

study was performed to investigate the user mobility effects on slow integrator power control algorithm. In 

[9] a modification of the distributed SIR balancing algorithm was proposed, which was less sensitive to SIR 

measurement errors. Also in [10] stochastic measurements were incorporated in the power control algorithm 

and it was shown that the power levels converge, in the mean square sense, to the optimal power levels. More 

recently, it was shown in [11] how a simple Kalman Filter may be designed to smooth out the interference 

measurements. Also in [12] it was mentioned how a minimum-variance power control algorithm may be 

designed when the diannel gain variations are modeled by filtered white noise sequences. Despite all this 

effort towards analysis and design of power control algorithms in non-stationary environments, most of the 

results fail to provide a systematic approach. 

An alternative approach is to formulate the power control problem as a decentralized regulator problem, 

where the objective is for the SIR of every user to tmck a draired threshold, while the channel gains and 

the interference levels are changing with time and the SIR measurements can be erroneous. Based on this 

approach, concepts and design methodologies from control theory have already been used for the analysis of 

some power control algorithms [27] and design of new algorithms [12][28]. 

We first note that, in the logarithmic scale, the distributed iterative algorithm in (4) is a simple unity gain 

integrator algorithm in a closed-loop. Using a bar on the variables to indicate values in dB or dBm, we can 



write: 

Pi(n) = pi(n - 1) + (7i - fi(n)) = pt{n - 1) + ej(n), (5) 

where pj(n) is the power level in dBm for user i for the duration of the n-th power update period and ft{n) 

is the SIR in dB for the same user at the beginning of the n-th power update period: 

n(n) = Pi(n - 1) + gain) - It(n) (6) 

Moreover, /{(n) is the measured local mean interference plus noise power in dBm, available at the beginning 

of the n-th power update period: 

Ii(n) = lOlogio [ J^gii(n)W^^r + ,,<(„) j . (7) 

The block diagram for a single loop, associated with a single user, is shown in Figure 1. The controller transfer 

fiinction in this case is: 

where g is the shift operator. Therefore, the network can be seen as a set of interconnected local loops. It 

should be realized that the couplinp among the local loops is through the Interference function (7), which, 

in general, is nonlinear. The decentralized regulator formulation of the power control problem can now be 

presented as the following: "Design a set of local contwllers Ki{q~^) such that the SIR for every user, ft, 

tracks a desired threshold 7, with a certain performamx whUe the global network remains stahle." 

The local loops in Figure 1 are quite general and can be modified to accommodate different modeling 

assumptions. For example, extra delay blocks may be inserted in the feedback path to model processing and 

propagation delays. Moreover, a saturation block may be inserted in the forward path after the controller to 

model the maximum and minimum power constraints. Also we have implicitly assumed a Imear time invariant 

controller by writing Ki{q~^). However, in general, the controller itself can be a nonlinear block, as is the case 

for Fixed-Step power control algorithms. Unfortunately, analysis of stability and convergence of the algorithms, 

designed via this approach, can be very complicated. Both local and global stability for the network should 

be analyzed while feasibility of the network and its implications should be addressed. 

The global stability of the network implies that all the local loops are stable, but the reverse is not necessarily 

true. It was shown in [26] that as long as the network stays feasible, i.e., the channel gain variations do not 

force the network out of its feasibility region, a sufficient condition for global stability of the network is: 

l|Gi(r')||,^_,„,„,,<i, (9) 



where Gi(q *) is the transfer fiinction from the interference Ii{n) to power pi(n - 1) and the £« - induced 

norm for the single-input-single-output system can be obtained as: 

\Pi(^   ')|I<„-W«=e<* = IIS'lll =- E Mm , (10) 
ft=0 

where gi denotes the impulse response associated with the transfer function Gj. 

Hence if the local loops are stable, and if the feasibility condition is not violated and (9) is satisfied for 

all local loops, then the network will be globally stable in the sense that the deviations of the power levels 

from their corresponding optimal values will always remain bounded. It was also shown in [12] that if the 

channel gains are constant and the network is feasible (i.e., a fixed optimal power vector P* exists) and if the 

interference fiinction (7) is linearized around P*, then all small deviations of the power levels in the network 

from their corresponding optimal values will asymptotically converge to zero if: 

ll<?'(«"')|l..-in.„„d = ™P \Gi i^") I < 1- (11) 

The above condition is ind^d a sufficient condition for global stability of the linearized network in the 4 - 

induced norm sense, while (9) gives a sufficient condition for global stability in the £» - induced norm sense 

without any linearization or any constant gain assumption. 

III. PREDICTIVE POWER CONTROL 

Our objective in this section is to show how simple models for the variations in the channel gains and the 

interference levels may be used in designing simple Kalman filters, that provide predicted measurements for 

both the channel gains and the interference levels while they mitigate the effects of the fast fading induced 

measurement errors. 

We are assummg that the received SIR measurement or the power command are sent back to the transmitter. 

In other words, we are considering information-feedback closed-loop power control algorithms. Due to the 

limitations on the control bandwidth and on the processing time, information-feedback algorithms usually run 

at slower power update rates. Therefore, similar to DCA algorithms, they operate on the local mean values, 

which are obtained through some sort of averaging of the measurements over some relatively long periods. 

A. Models for Variations in Channel Gains and Interference Levels 

The variations in the channel gains can be characterized by the slowly changing shadow fading and the fast 

multipath fading on top of the distance loss. We consider log-normal shadowing whose spatial (or temporal) 

correlation is represented with a simple first-order Markov model presented in [301. 



The channel gain from every user i to its intended base station, in the logarithmic scale, is therefore modeled 

as: 

gain)   =   ^i + Sgii(n) (12) 

Sguin)   =   aSguin -1) + Wg{n - 1), (13) 

where g% is a constant bias and Wg is a zero mean white Gaussian noise sequence. The constant bias accounts 

for the antenna gains and the distance loss in the filter. The parameter o is obtained as: 

o = e~S, (14) 

where v is the user velocity and T is the update period. Note that vT is the distance that the user moves 

during one update period. Moreover X, is called the shadowing comlation distance. It is the distance at 

which the normalized correlation decrease to e~^. To see this, note that the autocorrelation fimction for Sg 

can be obtained as: 

Rss(m) = E [Sgim + n)Sgin)] = ^z^a^ = <yjal™l, (15) 

where ff„^ denotes the standard deviation of the noise sequence Wg. Note that given the standard deviation 

for shadowing dg and the value for a, the standard deviation for the driving white noise sequence can be 

obtained. 

In order to design distributed algorithms, we need to decouple the local loops in the network. For this 

piurpOTe, the interference plus noise should be modeled independently for every user. One approach is to treat 

interference plus noise simply as a bounded disturbance for every user and design the power control algorithm 

based on the worst case considerations. However, we decide to model the interference plus noise, similar to 

the channel gains, by white noise driven first-order Markov variations on top of a constant bias. That is: 

Ii(n)    =   If+Sli(n) (16) 

Slt(n)    =   aSIiin-l) + wi(n-l), (17) 

where wj is a zero-mean white Gaussian noise sequence independent oiwg, but with the same variance. While 

this model may not exactly capture the slow variations in the interference in a power-controlled system, it 

can still be reasonable when such slow fluctuations in the interference levels are dominated by shadow fading. 

Note that, putting aside the changes in the transmit power levels, due to power control, the fluctuations in the 

channel gains and interefemce levels basically result from the same physical phenomenon. We therefore use 



this model in a Kalman Filter to obtain the one-step predicted measurements of the local mean interference 

values. 

Note that one shall use receiver diversity techniques to combat fast fading, since power control algorithms, 

in general, cannot track very fast channel variations. While we will evaluate the simulated performance of 

our algorithm with higher power update rates, we decide to select the power update period such that the fast 

multipath fluctuations are averaged out while the slower shadowing fluctuations are being tracked. It was 

shown in [31] that, under the flat Rayleigh fading assumption, when a first order low-pass filter or simply 

a moving average filter is used to obtain the local mean values of the measurements, the averaging error in 

dB will have a Gaussian distribution, whose mean can be made zero by appropriate choice of the filter DC 

gain and whose standard deviation depends on the shadow fading standard deviation a^, the ratio of the 

shadowing correlation distance to the carrier wavelength X^/A, and the normalized measurement time /^T, 

where /„ = vJX is the maximum Doppler frequency. 

It is now clear that the model parameters not only depend on the environment through the values of the 

shadowing standard deviation and the shadowing correlation distance, but also depend on the user velocity. 

While one can think of implementing individual adaptive Kalman filtera for each user, where the model 

parameters are continuously updated based on the available information about the user velocities, we choose 

to consider a fixed model to design and implement the same filters for all the users in the network. There are 

two main reasons for this. One is that for a rather broad range of user velocities, the values for o and a-^i , 

and as shown in [31], the averapng error variance only slightly change and we believe that the Kahnan filters 

will be robust to such changes. The other re^on is that whOe some techniques have been already propped 

for user velocity estimation in mobile environments (refer to [32] and the reference therein), most of them 

fail to provide accurate estimates in real time. 

B. Kalman Filter Design 

Using a set of available measurements, corrupted with Gaussian noise, a Kalman filter recursively obtMns 

the minimum mean squared error estimates of a set of variables that are varying according to a given dynamic 

model. Kalman filters have proved to be strong estimation tools in a very wide range of applications [33]. As 

examples of applications in communication systems, Kalman filters have been used for channel equalization 

[34], interference estimation for call admission in CDMA networks [35] and for power control in packet-switched 

broadband TDMA networks [9]. 



We propose a predictive power control algorithm, where two Kalman filters are employed to provide the 

one-step predicted estimates of both the channel gains and the interference levels for every user, which are 

then used in an integrator algorithm to update the power levels. Using (12) and (13) for the channel gains, 

we can write: 

gii(n) = again - 1) + (1 - a)g% + Wg(n - 1), (18) 

Similarly, using (16) and (17) for the interference levels, we can write: 

liin) = ali(n - 1) + (1 - o)^ + w/(n - 1). (19) 

The idea is to design two simple Kalman filters that use the erroneous local mean measurements, available to 

every user, to estimate the constant biases in the models and provide the one-step predicted estimates of the 

channel gains and the interference levels. As mentioned,-the same models are used for all the mobiles in the 

network. Hence we eliminate the indices i and it for a simpler notation. 

It is now appropriate to represent both models in the state-space form. Define %i(n) = g{n), Xg2{n) = f", 

xn{n) = /(n), and x 12(11) = P. The state-space models for every user can then be obtained as: 

Xg(n) = AfXg{n-l)+Wg{n-l), (20) 

Vg(n) = HfXgin)+Vg(n), (21) 

xi{n) = AfXj{n-l)+wiin-l), (22) 

yi(n) - HfXi(n)+viin) (23) 

where: 

A 
,      Wg 

Xgl 

Xg2 

a   1 —o 

0       1 

Wg 

WgO 

, It) I = 
Wj 

.     H/^ 1   0 

(24) 

(25) 

where Wgo and WJQ are two mutually independent fictitious zero mean white Gaussian noise sequences , which 

are also independent from Wg and wj. They are required to make the filters more robust to the uncertainties in 

the models. Moreover, Vg and «/ are mutually independent zero mean white Gaussian noise sequences, which 

are assumed to be independent from all other noise sequences in the model and are used to model the fast 

fading induced averaging errors and other possible uncertainties in the local mean measurements. Remember 

that all the variables are expressed in a logarithmic scale. 



Now starting from initial estimates Xg(0)   and 4/(0)", the measurement update equations for the filters are 

expressed as: 

Xg(n)+    =   Xgin)-+ Lg(n) {ygin) - HfXg(n)-) (26) 

xj{n)+    =   xiin)-+ Li(n) (yiin) - HfXi(n)-) (27) 

where Xg(n)- and xi{n)- respectively denote the propagated (a priori) estimates of the channel gain and the 

interference level at the end of the (n - l)-th power update period. Hence, at time n (i.e., the beginning of the 

n-th power update period), the current local mean measurements yg{n) and yi{n) are incorporated to obtain 

the updated (a posteriori) estimates Xg{n)+ and f/(n)+. The two-dimensional filter gain vectors Lg and Lj 

are obtained as: 

Lg(n)    =   Pg(nrHfiHfPg(nrHf + Vgy\ (28) 

Li(n)    =   Pi(n)-Hf {HfPi(nrHj + Vi)-\ (29) 

where Vg and Vj are the measurement noise covariances and Pg(n)- and Pi(n)- are the propajoted estimation 

error covariance matrices. Note that we only have scalar measurements and no matrix inversion is involved. 

At time n, the covariance matrices are updated as: 

PM^    =   PAn)-- Lg(n)HfPgin)- (30) 

P,in)+    =   Piinr-Liin)HfPiinr, (31) 

Now the one-step predicted ^timates for the channel gain and the interference level are obtained by propa- 

gating the estimates to the next power update period: 

Xg(n + 1)-   =   AfXg(n)+ (32) 

xiin + l)-   =   Afxi{n)+, (33) 

and the covariance matrices are propagated as: 

Pg(n + 1)-    =   AfPgin)+Af+ Wg, (34) 

Pj(n + 1)-    =   AfPi(n)+Aj + Wi, (35) 

where Wg and Wj are two-dimensional diagonal covariance matrices for the driving noise sequences in (20) 

and (22), respectively. 
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Incorporating the one-step predicted estimates in the integrator algorithm (5), the updated power level for 

the duration of the n-th power update period can be obtained as: 

p(n)^p(n-l) + {j-rin + iy), (36) 

where: 

f{n + iy    =   p{n-l) + Xgi{n + iy-xnin + l)" 

=   p{n-l) + g{n + l)--I{n + 1)-. (37) 

When a call is ^signed (or reassigned) to an idle channel, its Kalman filter estimates are initiaUzed (or reset) 

as Xgi{0)~ = Xg2(0)~ = g(0) and xn(0)~ = 4/2(0)~ = /(O), where g{0) and J(0) are the local mean channel 

gain and interference values available at the time of channel assignment. Also the error covariance matrices 

are initialized as Pg(0)~ = P/(0)~ = diag(tTj,orJ) where o-, is the shadow fading standard deviation (set to 8 

dB in our simulations). 

We pick the model parameter a according to (14) and by considering the maximum user velocities that we 

expect in our mobUe environment. This makes the filter assume the le^t correlation among the local mean 

values in two consecutive power update periods and therefore rely more on the measurements. As we shall 

explain in our siinulation details, we assume the power levels to be updated every 100 msec. Also we consider 

the shadowing correlation distance to be about 40m and the maximum user velocity to be 80 km/hr. Using 

(14), we then pick a = 0.95. Using this value for o and ffj = 8 dB and (15), we get <r% = a%^ = 1.56. We 

choose to set tr%^ = trj^ = 2.0 in the filter, again to deal with uncertainties in the models. The variances for 

the flctitioiw driving noise sequences Wgo and tu/o are also set to 2.0 dB^, Also the standard deviations for 

the local mean measurement errors are both set to 3.0 dB, i.e., Vg = Vi = 9.0. 

One should observe that the error covariance matricra and the filter gains are independent of the actual 

measurements. This can be seen from the filter equations (28)-(35). Therefore, the filter gains Lg and Lj can, 

in fact, be calculated and saved o priori. This can result in a significant reduction in the filter processing time. 

Also note that when the filter reaches the steady-state on a specific channel, the steady-state filter gain 

vectors are equal to: 

Lg = Li= PHj {HfPHj + V)~\ (38) 

where Vg = Vi = V and P is the positive-definite solution to the following discrete Riccati equation: 

P = AfPAj - AfPHj(HfPH'^ + vy^HfPA^f + W, (39) 



^T 

0.37990   0.37121 (40) 

where Wg = Wj = W. Using our selected values, we get: 

Lg = LI = L ■ 

C. Global StabUity of the Network 

When the Kalman filters are employed, the block diagram for a single loop can be depicted as in Figure 2. 

We now show that, in the steady-state, the Kalman filters and therefore the local loops are stable^. Moreover, 

the sufiicient conditions for global stability are satisfied. 

Given the filter gains in (40), it is straightforward to obtain the steady-state transfer functions for the 

Kalman filters: 

g(n +1)- ^ I{n +1)~ ^  q (0.37947g - 0.36091) 
Sin) I{n)      ~ g2-1.57053g +0.58909' ^^^^ 

The poles of the Kalman filters (i.e., the poles of the above transfer fimction or equivalently the eigenvalues 

of Af — AfLHf) are located inside the unit circle at: 

s/i = 0.61928,      Sf2 = 0.95125. (42) 

It is now clear that all the local loops are stable, i.e., the poles for all the closed-loop transfer fiinctions, associ- 

ated with a single loop, are inside the unit circle. Processing and propagation delays (i.e., extra delay blocks in 

the feedback path) could result in instabUity of the local loops and therefore instability of the whole network. 

However, even though some delay compensation schemes have been proposed in [12], information-feedback 

power control algorithms, as mentioned before, usually run on lower power update rates and processing and 

propagation delays are usually much lower than a power update period. 

As we mentioned, stability of the local loops is necessary but not sufficient for global stability of the network. 

However, the network will indeed be globally stable in the £«> - induced norm sense, if the transfer function 

from the interference I{n) to the power p(n - 1), satisfies the norm condition (9), 

Using (41) and from Figure 2, it is straightforward to obtain: 

p(n - 1) 0.37947g - 0.36091 
G(g) J(n) g2 - 1.57053g + 0.58909' 

and hence we get: 

\G(q)\U,-in4uced - l|G(g)||,„_i„rf„eed = l-O- 

(43) 

(44) 

Under the technical conditions of stabiUzabiUty and detectabiUty, the steady-state Kalman filters are always known to be 

stable [33] 



Therefore G{q) satisfies both (9) and (11). Rrom (9), we conclude that, as long as the network is in its feasible 

region, the deviations of the power levels of all the users in the network from their corresponding optimal values 

wUl always remain bounded. Moreover, from (11), we conclude that if the power levels only slightly deviate 

from their optimal valu^, while the channel gains remain constant, they will asymptotically converge back to 

their optimal values. This proves the global stability of the network, on every channel, both in too sense and 

in £2 sense (with a linearized interference function), when the Kalman filters are at their steady-state. 

When multiple channels are considered and the power control algorithm is integrated with a DCA scheme, 

the global stability analysis for the network becomes extremely complicated. Average number of channel 

reassignments per call can be considered as a measure, which can somehow show the level of stability for the 

network. We show through computer simulations that the average number of channel reassignments per call 

will be significantly reduced when the Kalman filters are employed in the power control algorithm. 

IV. SIMULATION MODEL 

WhUe the previous theoretical analysis helps in justifying the use of Kalman filters in power control algo- 

rithms to deal better with the variations in the channel gains and the interference levels and also the errors 

in the local mean measurements, a simulation study is essential to analyze the overall performance when such 

a predictive power control algorithm is integrated with a DCA scheme in a relatively realistic mobile environ- 

ment. We therefore set up a system-level simulation environment, similar to the ones presented in [17]-[18] 

but on a smaUer scale, in order to analyze the overall performance of the network, when our predictive power 

control algorithm is integrated with a distributed minimum interference DCA scheme. User arrivals and de- 

partures and user mobility are all considered. In this section, we explain the detaOs of oiur simulation platform 

and in the next section, we analyze the results. 

The simulations run on the frame level, and hence only power and interference levels are simulated and no 

modulation and coding are considered in the simulations. While we do not restrict ourselves to any specific 

standard, we have tried to stay close to the Global System for Mobile Communications (GSM) standard. 

A 3x3 square grid of cells is assumed. The base stations are located on the cell centers and are separated by 

800m. To avoid edge effects, a ring simulation structure is assumed, i.e., the statistics are only gathered from 

the central cell. This is somewhat simpler than a toroidal simulation structure and is shown to provide more 

optimistic but comparable results [36]. The other reason for our results to be somewhat optimistic is that only 

nine cells are simulated, and therefore lower interference levels are generated. However, our simulation results 



dearly serve our purpose of comparing our predictive DCPA scheme with the one that uses no prediction. 

Omni-directional antennas with two branch selection diversity is assumed for the base stations. 

Every channel is characterized by a pair (m, n) where m denotes the carrier frequency and n is the index for 

the time slot. We consider two carrier frequencies and eight slots per carrier. As mentioned before, no blind 

slots are considered. Hence, there are 16 available channels, all of which can potentially be used as traffic 

channels. 

Every frame is 4.0 msec, consisting of 8 slots, each with a duration of 0.5 msec. It is assumed that the 

signal and interference power measurements for every user are available in every frame at the end of the user's 

corresponding slot. Various events might then happen every multiple number of frames. 

The channel gain for every link is normalized with respect to the base station and mobile antenna gains and 

is characterized by three components: distance loss, slow or shadow fading and fast fading. The distance loss 

is assumed to be inversely proportional to d", where a is set to 4.0. For shadowing a log-normal pattern is 

generated a priori. Therefore the shadowing values only depend on the user's location. The resolution of the 

shadowing grid is set to be equal to the shadowing correlation distance X^, which is assumed to be 40m. The 

shadowing for every user is then obtained by a normalized bilinear interpolation of the four closest points on 

the shadowing grid. A slowly varying flat Rayleigh fading is also assumed. This unplies that no line-of-sight 

exists and the delay spread is small compared to the symbol duration or the inverse channel bandwidth and 

thus only a single path with a Rayleigh distributed amplitude (and hence exponentially distributed power) can 

be distmguished. In fact, the Rayleigh fading component is assumed to be constant for the whole duration of 

a single slot (0.5 msec). Time correlation for Rayleigh fading is often represented using the Jake's model [29], 

where it is expressed in terms of a zero order Bessd ftmction of the first kind, which results in a non-rational 

spectrum. We use a first-order approximation by passing a white complex Gaussian noise through a first order 

filter and obtainmg the squared magnitude of the output Gaussian process. The time constant of the filter, for 

every user, is obtained by setting its 3 dB cut-off frequency equal to /„/4 where /„ = v/k is the maximum 

Doppler frequency for the user [13]. 

New calls are generated based on a Poisson process with a given arrival rate Ao. Each call is assigned an 

exponentially distributed holding time with a given average value T^. The average Erlang load per cell is then 

obtained as Ec = kaTh/Nc, where JVc = 9 is the total number of cells. The Erlang load per cell effectively 

determines the average number of users that could be active in every cell at any instant of time. We have 

considered various combinations of values for Ao and T^ to simulate the network under different traffic load 
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conditions. 

The new users are uniformly distributed in the area. The mobihty of the user i is modeled with a constant 

but random speed Vi and the angle 9i between the velocity vector and the horizontal axis {-it <0i< ir). The 

speed for every new user is selected randomly from a triangular distribution in the range 0-80 km/h. This is 

preferred over a uniform distribution, as it results in a smaller variance for the velocity distribution among 

different users. The initial direction B is uniformly picked. Then every 10 sec, a new direction is selected from 

a triangular distribution with the old direction as its mean. This is again preferred over a uniform distribution 

or a two dimensional random walk, since it makes small angle turns more probable that large ones. The 

motion trajectory for a sample user is shown in Figure 3. 

The desired SIR threshold for all users in the network is set to 7^ = 12 dB, while the minimum tolerable 

SIR is considered to be 7mtn = 10 dB. Both margins for new user admissions and user droppings are set to 

2 dB. Therefore new users will be admitted only if they can achieve fnga, = 14 dB on the idle channel with 

the minimum local mean interference. Moreover, a user will be dropped from the network if its SIR drops 

below 7drop = 8 dB and stays below for 4.0 consecutive seconds. Note that these margins should have been 

expressed as percentages of 7^ and ^mm for every user, if the users were to have different quality of service 

requirements and thus different SIR thresholds. 

When a new user arrives into the network, it firet starts scanning the downhnk control channel from all 

neighboring base stations and measures all the local mean channel gains. It is assumed that this process take 

about 0.8 sec (200 frames), which is called the initial call set-up time. The new user then sends its request 

for a channel to the base station which has the strongest signal. If this base station does not have any idle 

channels, the user wUl try the second best base station. This procedure is called Direct Retry and will be 

repeated for a pven number of base stations (set to 3 in our simulations) before the user is blocked. When 

there are idle channels available, the base station checks whether the user can achieve 7„eu, on the idle channel 

with the minimum local mean interference. If so, the user will be admitted and will be assigned to the idle 

channel with the minimum interference. Otherwise, the user will be blocked. 

We should note that no macro diversity is considered, i.e., any user will only communicate with a single 

base station at any instant of time. Moreover, base station assignment is considered to be separate from power 

control, i.e, the power levels are obtained assuming that the users are already assigned to their corresponding 

base stations. Joint base station assignment and power control has already been proposed in the literature 

[37]. 



A minimum interference DCA scheme is employed. The local mean channel gain and interference values 

for possible channel reassignments are obtained by simple averaging of the available measurements over 50 

consecutive frames for every user. 

Finally, a base station hand-off attempt will be triggered if the local mean channel gain from a neighboring 

base station exceeds the corresponding value from the current base station by a selected hand-off margin of 

4 dB. If the hand-off attempt fails, the user will stay with its current base station. Note that the users are 

assumed to be continuously monitoring the downlink control channels of all neighboring base stations. 

Two power control algorithms are simulated. Namely, the simple integrator algorithm in (5) and (6) and 

the predictive algorithm in (36) and (37) are compared. Note that while the propagation simulation models 

are tailored to individual users, according to their different trajectories and speeds, the same Kalman filter 

models and parameters are employed for all the users in the network. 

After a new user t is admitted, it sets its initial power at: 

-'»' = ^. («) 

where 10)' and gu(0)', respectively, denote the local mean channel gain and the interference plus noise 

level, which are available at the time of user admission. Note that this is somehow an optimistic choice, since 

a new user sets its initial power as though other usera will not increase their transmit powers. 

For most of the simulations, the power update rate is assumed to be the same for all users and is set to 

100 msec, that is, every user updates its power level every 25 frames. The idea is to have fast multipath 

fluctuations averaged out while slower variations are being tracked. In all simulations, a maximum transmit 

power constraint at 30 dBm is imposed on all users in the network, while the receiver noise floor is set to -120 

dBm. 

It should be mentioned that since the usere arrive at arbitrary instants of time according to a Poisson arrival 

process, the power updates are in fact performed asynchronously, even though all the users have the same 

power update rates. While most results in power control assume synchronous power updates among the users, 

asynchronous power control algorithms have been addressed in the literature [5]. To have synchronous power 

updates, one could simply force the users to arrive at instants of time, which are multiples of a common power 

update period. 
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V. PERFORMANCE ANALYSIS 

In this section we present and analyze our simulation results and show how the predictive DCPA scheme 

can improve the overall performance of the network. 

For any given traffic load, we run the simulations multiple times with different random generator seeds 

and every run continues until enough number of calls are dropped. The statistics are then gathered from the 

central cell. 

Figures 4 and 5 show the call blocking and the call dropping responses of the network under the two DCPA 

schemes. It can be seen that at 7.0 Erlang/Cell, the predictive DCPA scheme achieves about 0.5% lower 

blocking rate and about 0.03% lower dropping rate. Moreover the improvement in performance increases as 

the traffic load increases. Rsmember that there is always a trade-off between blocking new calls and dropping 

active calls. 

Our predictive DCPA scheme also results in better target SIR tracking. We obtain an estimate for the SIR 

error standard deviation and also estimates for the SIR cumulative distribution functions by looking at the 

local mean SIR values of all the users in the network at various random instants of time (after enough call 

attempts have been made and the network has reached some kind of steady state) during every run of the 

simulation. Figure 6 shows the standard deviation for the error in the local mean SIR for a range of traffic 

loads. It can be seen that the predictive scheme decreases the SIR error standard deviation by about 0.3 

dB at 7.0 Erlang/Cell, while the improvement is about 0.7 dB at 10.0 Erlang/Cell. Rirthermore, Figure 7 

shows the cumulative distribution for the local mean SIR values in the network under 8.0 Erlang/Cell and 

10.0 Erlang/Cell. These figures show how the local mean SIR valu^ for different users are spread around 

the target SIR value 7^ = 12 dB. It can be seen that the predictive DCPA scheme results in the local mean 

SIR valu^, which are less spread around the target SIR. The improvement is again more noticeable in higher 

traffic loaui. In fact. Figure 8 shows how the local mean SIR cumulative distribution function changes with 

the traffic load under both schemes. 

One measure that somehow shows the level of stability of the network is the average number of channel 

reassignments per call. Figure 9 shows this number for a range of traffic loads under both DCPA schemes. 

As one would expect, fewer channel reassignments per call are, on average, required in the predictive DCPA 

scheme. One reason for this is that, as shown before, the predictive scheme does indeed result in better target 

SIR tracking and smoother local mean SIR behavior. 

We also compare the transmit power distribution of the users in the network under the two DCPA schemes. 



Figure 10 shows an estimate of the cumulative distribution function for the transmit powers of the users in the 

network at the load of 8.0 Erlang/Cell. It can be seen that the two schemes perform quite similarly, as far as 

transmit powers are concerned. In fact, both algorithms result in considerable power saving, when compared 

with a network where all the power levels are fixed at their maximum levels. For example, at a relatively high 

load of 8.0 Erlang/Cell, about 50% of the users under both DCPA schemes are transmitting at 0 dBm or lower 

power levels. It should however be mentioned that our predictive DCPA algorithm seems to result in slightly 

higher power levels m the network. While one may see this as a small cost for better SIR tracking and better 

call blocking and dropping responses, it should also be noted that our predictive DCPA scheme does indeed 

result in higher capacity which in turn unplies more active users at any instant in time. This higher traffic 

explains the higher average transmit power for the users. In fact. Figure 11 shows how the power cumulative 

distribution functions might change as the traffic load on the network changes under the two DCPA schemes. 

Finally, one might argue that our power update rate is too low for the average speeds considered in our 

simulations. In order to farther evaluate the performance of our predictive algorithm, as comapred to standard 

fast power control schemes, we also simulated the DCPA scheme with standard fixed-step power control 

algorithm where, depending on the daviation of the received SIR from its target value, the power of each user 

is incremented or decremented by a fixed 1 dB step every single frame (i.e., once per 4 msec). We then ran the 

same simulations with our integrated predictive DCPA scheme where the power of each user is updated every 

5th frame (i.e., once every 20 msec). Tables 1 and 2 show the call dropping and call blocking probabilities 

for the two scenarios under two sample traffic loads. It can be seen that the results are similar with our 

predictive algorithm still performing slightly better. Note however that while some additional computational 

cost is associated with our algorithm, the update rate for our algorithm is taken to be five times slower than 

the standard fixed-step algorithm. We do however believe that clarification of the exact trade-off between the 

extra computation and the lower update rate would require farther analysis using simulations and, possibly 

profiling the code on specific processors. 

VI. CONCLUSION 

A predictive Dynamic Channel and Power Allocation scheme was presented in this paper. Simple Kalman 

filtere were designed to obtain the predicted estimates of the local mean channel gains and the local mean 

interference plus noise levels. These predicted estimates were then incorporated in an integrator algorithm to 

update the power levels of all the users in the network. It was shown how generic models may be used and 



filter parameters may be selected to design the same robust filter for all users. Local stability of the network 

was analyzed. Moreover it was shown that the sufficient conditions for global stability of the network were 

satisfied when the Kalman filters were employed in the power control algorithm. The global stability results 

imply that, as long as the network stays feasible, the deviations of the power levels from their corresponding 

optimal values will always remain bounded, while the small deviations will always converge back to zero. 

This predictive power control algorithm was integrated with a Minimum Interference Dynamic Channel 

Assignment scheme in an FDMA/TDMA mobile radio system. A system-level simulation environment was 

then developed. User arrival and departures and user mobility along with flat Rayleigh fading effects were all 

included in the simulations. It was shown that the predictive DCPA scheme results in better call dropping 

and call blocking responses and also better target SIR tracking performance for the network. Moreover, on 

average, fewer channel reassignments per call are required under the predictive DCPA scheme. We believe 

that these improvements are obtained mainly because the predictive algorithm takes into account at least the 

slow variations of the channel gains. Also by dealing with uncertainties in the measurements, it effectively 

mitigates the fading induced local mean measurement errors. It was shown however that the predictive DCPA 

scheme results in slightly higher power levels for the users in the network. 

As for future research, one may try to design adaptive algorithms where the parameters of the algorithm 

and even the power update rates are adaptively adjusted for individual users, according to such information 

as user velocities, etc. Also the standard integrator algorithm may not be the best power control algorithm. 

Even though constraints on complexity and computational effort are always present, other simple algorithms 

may still be designed that could result in better SIR tracking, better allocation of resources and finally higher 

levels of capacity in highly non-uniform and non-stationary environments. Finally, analyzing the behavior of 

any prediction filter, both in terms of convergence and performance, under bursty interference conditions can 

constitute another interesting line of fiiture research. 
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Fixed-Step DCPA, 250 Hz Predictive DCPA, 50 Hz 

8.0 Erlang/Cell 0.17% 0.16% 

9.0 Erlang/Cell 0.73% 0.66 % 

Table 1 

CALL DROPPINQ PBROBNTAOB 

Fixed-Step DCPA, 250 Hz Predictive DCPA, 50 Hz 

8.0 Erlang/Cell 1.12% 0.86% 

9.0 Erlang/Cell 3.27% 3.15% 
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Abstract 

Power control is considered as an efficient scheme to 
mitigate co-channel and multiple-access interference 
in cellular radio systems. Various approaches have 
been proposed in recent yeare to design power control 
algorithnw. We focus on the feedback algorithms that 
are based on Signal to Interference plus Noise Ratios 
(SIR-based algorithms). We review SIR threshold ap- 
proach and then discuss how power control design can 
be formtilated as a decentralized regulation problem. 
We um a robust control framework to analyze global 
stability of a network on a single channel. We obtain 
a sufficient condition, which guarantees that the de- 
viations of the power levels from their optimal values 
remain bounded, even when the channel gaiiw change, 
as long as the network stays feasible. 

1 Introduction 

Optimal allocation of transmit power levels in wireless 
networlffi has attracted a lot of attention in recent 
yeara. The main idea is to control the transmit power 
level of a user or a base station in a wireless system 
in order to maintain an acceptable level of quality of 
service, while eliminating unnecessary interference to 
other usera in the network. Different objectives and 
approaches have been perceived for power control and 
different algorithms have been naturally obtained. 

The major objective in Direct Sequence Code Divi- 
sion Multiple Access systems is to mitigate the mul- 
tiple access interference and therefore the near-far ef- 
fect, whereas in Time/Rrequency Division Multiple 
Access systems the objective is mostly to control the 
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co-channel interference. Power control will also mini- 
mize the power consumption for the users and hence 
prolong their battery life. 

We focus on power control algorithms that are based 
on Signal to Interference plus Noise Ratio (SIR). Note 
that, in general, higher SIR would yield better bit 
error performance and it is therefore common to ab- 
stract the system architecture and consider SIR as the 
measure for quality of service in order to formulate the 
power control objective. 

One approach for SIR-based power control design is 
SIR threshold approach, presented in [1], where the 
objective is for the SIR of each user in the network 
to be above a desired threshold. It is shown how the 
optimal powers could be obtained through a simple 
distributed algorithm. The necessary and sufficient 
condition for the existence of the optimal powers is 
expressed as a feasibility condition. Various general- 
izations of this algorithm were later discussed in the 
literature. A imiform framework along with conver- 
gence analysis (under the condition of feasibility) for 
many of these algorithms were presented in [2]. 

In this paper, we focus on the decetralized regulator 
formulation for power control design. It has been no- 
ticed that the distributed algorithm presented in [1] 
is simply an integrator algorithm, in a closed loop, 
on the logarithmic scale. This has initiated a the de- 
centralized regulator approach for power control de- 
sign where concepts and design methodologies from 
control theory have been used for the analysis of cur- 
rent algorithms [3] and design of new algorithms [4] [5]. 
This approach could be especifically helpful if mod- 
els for fading, i.e., channel gain variations, are to be 
incorporated in the design.   However, stability and 



convergence of these algorithms can not be verified 
through simple techniques such as the one presented 
in [2]. Therefore more complicated stability analysis 
should be performed to ensure global stability of the 
network under these power control algorithms. A ro- 
bust control framework was presented in [4]; where a 
sufficient condition for global stability was established 
using a linearized interference function. We use a sim- 
ilar framework to obtain another sufficient condition 
for global stability without any interference lineariza- 
tion. This condition will guarantee that, under a de- 
signed power control algorithm, the deviations of the 
power levels in the network from their corresponding 
optimal values will always remain bounded even when 
the channel gains change, as long as the variations in 
the channel gains do not force the network out of its 
feasibility region. 

The organization of the paper is as follows. In the 
next section, we present the system model and review 
the SIR threshold approach. In Section 3, we review 
the decentralized regulator formulation for power con- 
trol design, and in Section 4, we obtain a sufficient 
condition for global stability. Concluding remarks are 
provided in the final section. 

2 System Model and SIR Threshold 
Approach 

Consider a cellular system where M users are sharing 
a single channel. This channel could be a frequency 
band (FDMA), a time slot (TDM A) or even a spread- 
ing code (CDMA). Therefore, for every desired user- 
base station link, there are M — 1 interfering links. 
The received SIR on the uplink channel for user i can 
now be written as: _ „ yuPi ri=^    -"-' (1) 

'- where Pi is the transmit power for user i, gu is the 
channel gain (or attenuation) from user i to its de- 
sired base station (in the linear scale), gy is the chan- 
nel gain from user j to the desired base station of 
user i and % is the receiver noise intensity at the de- 
sired base station of user i. Note that even though we 
choose to focus on the uplink channel, a similar model 
and similar rraults can be obtained for the downlink 
channel. Define the normalized channel gain matrix 
Z as: 

Z = [%•],      Zi. an 

Note that ^ is a non-negative stochastic matrix and, 
in general, is not symmetric. 

In the SIR threshold approach, the objective is for the 
SIR of every user i to be above a desired threshold 

7i, that is: n > ji. It is easy to show that these 
constraints can be written in the matrix form as: 

P>TiZ-I)P + U (3) 

whereT = diag(ju..., JM) andU = [ui] = [^] and 
I is the identity matrix. The necessary and sufficient 
condition for the existence of a positive power vector 
P, which satisfies the above constraint, is called fea- 
sibility. In other words, a network of users is called 
feasible if every user can achieve its desired SIR. The 
corresponding power vector is then called a feasible 
power vector. It is clear that feasibility of a network 
depends on ail channel gains and all desired SIRs, In 
SIR threshold approach, the feasibility condition is 
quantified and the minimum feasible power vector is 
obtained. 

Theorem 2.1 (SIR Threshold) Assuming U > 0, 
a network of users is feasible if and only if p{F) < 1, 
where: 

F = r{z-i)=^fu = o,    fij 
gu 

, Mi (4) 

and p denotes the spectral radius of a matrix. Under 
the feasibility condition, the optimal power vector is 
obtained as: 

P* = il- F)-^U (5) 

Matrix F is a non-negative (component-wise) irre- 
ducible matrix and the above theorem can be proved 
using some results from the theory of non-negative 
matrices [6]. The power vector P* is optimal in the 
sense that for any other feasible power vector P, we 
have P> P*. 

The above solution for P* is a centralized solution in 
the sense that a central processor needs to gather all 
the information about all the channel gains and target 
SIRs, calculate the optimal power vector and send 
back the corresponding power command to every user. 
It was shown in [1] that a simple iterative algorithm, 
which could be implemented in a distributed manner, 
would converge to P*. In fact, it is clear that under 
the condition of feasibility, the optimal power vector 
P* is the unique fixed point of the following iterative 
algorithm: 

P(n) = FPin -1) + U (6) 

and component-wise, we can write: 

Pi{n)   =    ^ I Y) gijPj(n - 1) + m 

=    :^Ii(n)=pi(n-l)-^ 
9ii ri{n) 
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gii(n) liin) fiinction in this case is: 

ri{n) 
—^ 

Figure Is A local power control loop, associated with a 
single user 

where Jj(n) is the total interference plus noise power 
at the receiver of the assigned base station for user 
». Therefore, at the beginning of the n-th power up- 
date period, the local mean channel gain gu and the 
local mean total interference plus noise power Ii(n) 
are measured at the receiver and the new power level 
Piin) is calculated and sent back to the user. Note 
that no extra delays are assumed for processing and 
propagation. Moreover, the convergence is proved as- 
smning that all the channel gains and the desired SIRs 
stay constant for the duration of convergence of the 
algorithm. This may not always be a reasonable as- 
sumption, especially if fast fading is considered while 
low power update rates are assumed. In the next sec- 
tion, we discuss how power control can be posed as a 
decentralized regulator problem. 

3 Decentralized Regulator Approach 

Using a bar on the variables to indicate the values in 
dB, we can write the distributed algorithm in (2) in 
logarithmic scale as: 

Piin) =piin-l)+iji-fiin)) =pi{n-l)+ei{n) (8) 

where ft (n) is the power level in dBm for user i for the 
duration of the n-th power update period and fi(n) 
is the SIR in dB for the same user at the beginning 
of the n-th power update period: 

fi(n) = Piin -1)+ gain) - Ii{n) (9) 

Moreover, /$(«) is the local mean interference plus 
noise power in dBm available at the beginning of the 
n-th power update period: 

liin) = 10logic ( l^ffylO^^^ +% flO) 

It is now easy to see that this algorithm is, in fact, a 
simple unity gain integrator algorithm in a closed lo- 
cal loop, as shown in Figure 1. The controller transfer 

Kiiq-') = PiiQ-') 1 
(11) 

where q is the shift operator. Therefore, the network 
can be seen as a set of interconnected local loops, 
each of which is associated with a single user. It 
should be realized that the couplings among the lo- 
cal loops is through the interference fiinction (10), 
which, in general, is nonlinear. The decentralized reg- 
ulator formulation of the power control problem can 
now be presented as: Design a set of local controllers 
Kiiq"^) such that the SIR for every user, f,, tracks a 
desired threshold ji with a certain performance while 
the global network remains stable. 

This approach has already initiated research on using 
control theory concepts for power control design [3]- 
[5]. Note that the local loops in Figure 1 are quite 
general and can be modified to accommodate differ- 
ent modeling assumptions. For example, extra delay 
blocks may be inserted in the feedback path to model 
processing and propagation delays. In fact, one step 
delay is typically assumed when high power update 
rates are considered [7]. It should also be mentioned 
that we have implicitly assumed a linear time invari- 
ant controller by writing Ki{q~^). However, in gen- 
eral, the controller itself can be a nonlinear block, as 
is the case for Fixed-Step power control algorithms. 

4 Global Stability 

Unfortunately, stability and convergence of the power 
control algorithms, designed as decetralized regula- 
tion algorithms, can not be verified through simple 
techniques sudi as the one presented in [2]. A robust 
control framework was proposed in [4] to obtain a suf- 
ficient condition for global stability using a linearized 
interference fiinction. We will use a similar approach, 
but with a different notion for stability, and we obtain 
a more general sufficient condition for global stability 
without any interference linearization. 

We consider a system to be stable if bounded inputs 
generate boimded outputs. In robust control termi- 
nology [8] [9], we use €oo norm to quantify the size of 
the signals in the system and £oo-induced norms to 
quantify the amplification of the signals, i.e., the size 
of operators or transfer functions. We will obtain a 
sufficient global stability condition using a fundamen- 
tal stability result called the Small Gain Theorem: 

Theorem 4.1 (Small Gain Theorem) Consider the 
feedback loop in Figure &.   Let (?i : €"   ^ t^ and 



Figure 2: Closed-Loop Stability 
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Figure Ss The Power-Controlled Global Network (on a 
single channel) 

Gi • t^ -^ i% he two stable operators and assume 
that the closed loop system is well-posed (i.e., for 
any «i,«2 G €00? them exists a unique solution for 
yijtf2 € ioo)- Then the closed-loop system is stable if 
l\'^l\\taa—t'nducedu^2\\t!x>—induced "^ ■••• 

Note that the above theorem only states a sufficient 
condition, which may be conservative in some cases. 

As we mentioned, a network of users can be seen 
as a nonlinearly coupled set of local loops. In fact 
the global network can be depicted as in Figure 3, 
where G(g~^) = diag(Gi(q-^),...,GM(q"^)) is a 
block diagonal closed-loop transfer function matrix 
from interference /(») to power P(n — 1) and J(.) is a 
nonlinear operator, which produces interference plus 
noise power in dBm from the power levels. Note that 
Gi{q~^) is also equal to the closed-loop transfer func- 
tion from 7i to fj. We have: 

P(n- -1) = G(g-i)(J(t 

'here: 

g 
A 

[5ll... #MM 

7 
^ 

lll.-.lMf 

I(n) 
A 

{h(P(n-l 

I{n)-g{n)+^{n) 

...lM(Pin-l) 

(12) 

(13) 

(14) 

(15) 

Now lets assume that the network always stays feasi- 
ble. Note that we are not assuming channel gains to 

M(n) 
Gil-') 

AP(n-l) 

-<>r-"('~')-^<« Plin-l) 

Figure 4: The Power-Controlled Global Network in a 
Variational Form 

be constant. But we only assume that the time varia- 
tions of the channel gains do not push the network out 
of its feasibility region. Therefore, at any instant of 
time, there exists an instantaneous bounded optimal 
power vector F*, which is related to the correspond- 
ing optimal interference as: 

P*(n-l) = r{n)-gin)+^{n) (16) 

Since we are not considering user arrival or depar- 
tures, P* will be constant as long as the desired SIR 
thresholds and the channel gains remain constant. We 
now consider the deviations of the power and inter- 
ference levels in the network, at every instant of time, 
relative to their optimal values, that is: 

AF   i 

M   t   I. 

P-P* 

I* 

Using (12) and (16), we can now write: 

Pin - 1) - Giq-^)P*(n - 1) = G(r^)AJ(n) 

Hence: 

(17) 

(18) 

(19) 

APin - 1) = P(n - 1) - P*in - 1) 

= nn-l)-Giq-')P*in-l)-l-{G(q-')-l4 P*(n-1) 
= G(q-^)AI(n) -I- ((?(g-i) - h) P*{n - 1) (20) 

where Id is the identity matrix. The network can 
then be shown as in Figure 4, where Api is the non- 
hnear operator transforming AP to A/. We can show 
that Ap/ is a contractive operator in the sense that 
\\Api\\i^-induced < 1. To do SO, we use the Mean 
Value Theorem flOl. 

Lemma 4.2 

\^Pl\\too-mduced < 1 (21) 

Proof: Using (10), it is straightforward to show: 

dli      I 0 i = j 
mm    i^j 22) 



Itemember again that the variables without bar in- 
dicate values in linear scale, R-om the Mean Value 
Theorem, we know that for every i and for every op- 
timal power vector F*, there exists a power vector 
P lying on the line segment between P and P* such 
that: 

dli 
AL = 

dP 
AP (23) 

p=p 

Now using (22) and (23) and assuming ||AP||oo < 1, 
which then implies \kpi{k)\ < 1 for alH = 1,..., M 
and fe = 0,1,..., we can write: 

\AIiik)\ = E gij{k)pj(k - I) 

^2. 

j^ Ei#i fti Wft (* - 1) + J7i 

gij(k)pj{k -1) 

Apjik-fj 

j^ Ei#4 gii(k)pi(k -1) + % 

^2. 
gijik)pj(k -1) 

Ej#ifltiWft(fc-!) + »?» 

Apj(k-1) 

<1 

(24) 

(25) 

(26) 
l^i nu K.'oji'i v* — J-; T- «/i 

Therefore: ||AI||oo = sup^maxj |Mi(fc)| < 1, and 
hence: ||Ap/||<„_jn<i«ced = sup||^p||^<i ll^i'lU < 1- 
Note that \\Api\\t^^in4^ced = 1 if no receiver noise is 
considered for any of the receivers. 

It m clear that stabihty of every local loop is a neces- 
sary (but not sufficient) condition for global stability. 
We are now ready to state a sufficient condition for 
global stability of the network. 

Theorem 4.3 (Global Stability) Consider the 
network in Figure 4- Assume that the network is al- 
ways feasible, i.e., there always exists a bounded power 
vector P* satisfying (16). Then the network is glob- 
ally stable if for every user i: 

Piiq- iloc,—induced <1 (27) 

Proof: Since Gi{q~^) always incorporates a delay, 
it is easy to see that the operator ApiG is always 
strictly causal and hence the closed loop system in 
Figure 4 is always well-posed. Moreover, the feasibil- 
ity assumption guarantees the existence of a bounded 
P*. Therefore, if ||G<(g-^)|b^_,„,_, < 1 for ev- 

ery user i, we will have ||G(g-i)||^„_,„d„eed < 1 and 
using Lemma 4.2, the global stability of the network 
will be established simply by invoking the Small Gain 
Theorem. 

The above theorem states that if the feasibility con- 
dition is not violated and if (27) is satisfied, then the 

deviations of the power levels of all the users in the 
network from their corresponding optimal values will 
always remain bounded. Even though the condition 
(27) is only sufficient and might be conservative in 
some cases, it can still help us design new stable algo- 
rithms and analyze the stability of current algorithms 
under channel gain variations. We will show this by 
an example. 

But first, we want to compare our result with the one 
presented in [4]. It was shown in [4] that if the channel 
gains stay constant and if the network is feasible (i.e., 
a constant optimal power vector exists) and if the 
interference function is linearized around this optimal 
power vector, then a sufficient condition for global 
stability of the linearized network (in the £2-induced 
norm sense) is: 

\Giiq -Is 
1I2—induced = sup\Gi(eJ")\<l (28) 

This means that if the power vector of the network 
deviates a little bit firom the optimal power vector, 
and as long as all the channel gains stay constant, the 
power levels will asymptotically move back to their 
optimal values. In contrast, in deriving the sufficient 
condition (27), no constant channel gain assumption 
was made and no linearization was involved. However, 
the stability in £00 - induced norm does not imply 
asymptotic convergence of the small power level devi- 
ations to zero. Instead, it implies that the deviations 
always remain bounded even if the optimal power vec- 
tor changes due to the variations in the channel gains. 
Also (27) is sometimes more conservative, since we al- 
ways have: 

piiq -l^ 
it2—induced < \\Giiq -1^ 

-induced (29) 

Example: Consider the integral algorithm in (8) 
with gain 0, i.e.,: ft(fc) =pi{k-l) + p{% - fi{k)), or 
in linear scale: 

„(*,=,.(,_ I) (_|. 

We have: 

-1^ -  q"'^i(g"^)   _     Pq-^ Gi{q-') = 
l + g-iifi(g-i)      l-(l-^)g- 

(30) 

(31) 

We should first note that for the local loops to be 
stable we need to have 0 £ (0,2). It is now easy to 
show that for 0 < iS < 1, we have: 

\Giiq-') H2—induced \Giiq -l^ • ^    ^ = 1-0 , -induced ' 
(32) 
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Figure 5: £oo — induced and 1% — induced norms for Gi 
in the one step delayed case 

and when /? becomes larger than one, both induced 
norms start increasing. This proves that not only do 
the power levels, obtained from the distributed itera- 
tive algorithm in [1] (where ^ = 1 is assumed), con- 
verge to their optimal levels if the channel gains stay 
constant, but also, under the channel gain variations, 
the deviations of the power levels from their optimal 
values always remain bounded. 

It is instructive to also consider the case where an 
additional delay is assumed for procrasing and propa- 
gation, i.e., one step delay is inserted in the feedback 
path in Figure 1. In this case: 

Gi{q-^) = - + q-^Ki(q-i)      l-q-i+0q 
0q- 

-2 (33) 

Ffrst note that 0 = 1 will result in closed-loop poles 
on the unit circle and therefore instability of the local 
loops. The €oo — induced and £2 — induced norms of 
Gi are shown in Figure 5. It can be seen that in order 
to guarantee the bounded deviations of the power lev- 
els in the network (i.e., the global stability in the I^J 

sense), we need to approximately have 0 < .27. More- 
over, to ensure the global stabiUty of the linearized 
system in the €2 sense, we need to have 0 < 0.33. 
These bounds on the gain are rather small and could 
therefore result in slow responses to the changes in 
SIR thresholds or the channel, gains. However, re- 
member that the sufficient conditions for global sta- 
bility have been obtained under worst case scenarios 
and therefore might yield conservative requirements 
in some cases. 

5 Conclusion 

We reviewed SIR threshold approach for power con- 
trol design in cellular wireless systems. Then we 
discussed the decentralized regulator formulation for 
power control problem. Using a robust control frame- 
work, we obtained a sufficient condition, which would 
guarantee that the deviations of the power levels 

from their corresponding optimal values always re- 
main bounded. We then showed that if no extra 
delay is considered for processing and propagation, 
the widely proposed integrator algorithm does indeed 
yield a globally stable network as long as the varia- 
tions of the channel gains do not force the network 
out of its feasibility region. As future work, we shall 
try to actually quantify some bounds on the power 
level deviations. 
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Abstract 

An LQ strong stabilization problem is proposed. To deteimine when a controller with periodic gains is locally superior to a linear tune 
invariant compensator for this problem, a il test is presented. For sptems with strictly proper transfer fimctions, it is proven that the 
fi^uency range where stable periodic controllers based on weak variatioiK about the LTl case can give 1>etter performance than stable LTI 
compensatore is finite. In the development, a means to evaluate the second partials of functioM with r^ect to matrix-valued parameters is 
introduced. For those systems where periodic control is wananted, techniques for designing ttptimal periodic strongly stabilizing controllers 
are presented. Two examples deteiling the application of the H test are provided, as well as aii optimal periodic controller design example. 
© 2003 Published by Elsevier Science Ltd. 

15      Keywords: Optimal control; Chattering; Stobility properties; LQO control; Periodic 

1. Introduction f 

17        Often it is desired that an output feedback controller not 
only stabilize a plant, but be stable itself. The prticess Bf 

19    designing such a controller is referred to as the stong sta- 
bilization problem. It has recently been showi'lhat ill lln- 

21     ear time-invariant (LTI) systems that i^ Both fletectable 
and controllable can be strongly stabilize by pferiodic con- 

23     troUers (Savkin & Petersen, 1998). The proposed controller 
design consists of a full state contioUer that during a pe- 

25     riod of length T operates without any measuremente upon 
a propagated state estimate. At thte end of the period, this 

27     state estimate is updated by a Luenberger estimator. 
This method haa-some drawback, however. The period 

29    must be longer than a muiimum length To to ensure strong 
stabilization, and the gain of the controller between the pe- 

31     riodic updates affects the size of To. Because a large period 
33     implies poor performance in the presence of disturbances. 

* A portion of this paper was presented in August 2001 at flie IFAC 
Workshop on Periodic Control Systems in ftmobbio-Como, Italy. ITiis 
paper was recommended for publication in revised form by Associate 
Editor ■ ■ ■ under the direction of Editor m. 

* Corresponding author. 
E-mail addresses: wolfe@talus.seas.ucla.edu, jwolfe@ucla.edu 

(J.D. Wolfe), sp^ei@seas.ucla.edu (J.L. Si»yer). 

0015-1098/03^-see front matter © 2003 Published by Elsevier Science Ltd. 
doi:10.1016/SW0S-1098(03)W)17g-X . 

alt) Inust be lopt reMonably small, but reducing To requires 
high controller gains. Also, it is worrisome from a robimt-     35 
ness standpoint tiiat the controller niiB open loop over each 
period. We will demonstrate that the distobance rejection     37 
capability of a stable continuous feedback confroUer is con- 
siderably better. 39 

The primary contribution of this paper is a cost fimction 
formulation that induces strong stability. Because this cost is     41 
non-convex, it provides an opportunity for periodic strongly 
stabilizing controUere to produce a lower cost than strongly     43 
stabilizing LTI controUere. Before designing a strongly sta- 
bilizing controller, however, it is wise to investigate the fol-     45 
lovdng related question: If we restrict ourselves to consider- 
ing oidy observer-structure controUere, and require the con-     47 
troller to be stable, when can a control with periodic gains 
potentially reduce the cost fimction compared to one with     49 
fixed gains? To answer this question, we coiwtruct a U test 
(Bittanti, Fronza, & Ouardabassi, 1973; Berr^tein & Gilbert,     51 
1980) that indicates when small periodic variations from the 
best time invariant controller may improve the cost fimc-     53 
tion. Of interest in its own right is the procedure we develop 
for converting problems where the optimization parametere     55 
are gain matrices into a form amenable to application of 
the n test. Since a considerable number of fixed stracture     57 
problems (including the static output feedback problem and 
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1     several decentralized control problems) involve optimizing 
over gain matrices, the method derived hsm appeare to have 

3     many extension. 
We then develop techniques for designing periodic con- 

5     troUers tlwt minimize our cost fimction and thus satisfy 
strong stability. It should be emphasized that a periodic sta- 

7    Me controller may be determined even when a static stable 
controller does not exist. Furthermore, although the JI test 

9    will indicate when an LTI stable compensator is not a local 
minimum (and that a stable periodic design can outperform 

11     it), failure of the E test does not imply that the stable LTI 
design is globally optimal, so construction of a stable peri- 

13     odic controller may still be worthwhile. 
This paper is organized as follows: Section 2 formulates 

15     a new cost function that penalizes unstable controllers. In 
Section 3, we state some results on the second derivatives of 

17    traces of matrix functions fliat are interesting in themselves 
for numerical optimization of fixed structure controllers. The 

19     n test for strongly stabilizing controllers is presented m 
Section 5, and it is shown that when a plant transfer ftmc- 

21     tion is strictly proper, gains based on weak variations flx)m 
the static gams can reduce the cost fimction below the cost 

23     with an LTI controller only over a finite frequency range. 
Section 6 describes the process of optimal periodic con- 

25     troUer design. The il test is applied to example systems and 
an optimal periodic controller is demoiKtrated in Section 7. 

27     Section 8 concludes the paper. 

2. The optimal control problem with a strong 
29     stabilization constraint 

Consider the Gauss-Markov time-invariant system de- 
31     scribed by 

33 

35 

37 

39 

dx = (Ax + Bu) df + [fi 0] dw, 

dy = (Cx + Du) dt + [0 Fa] dw. 

(1) 

(2) 

where x€W, y€R^, weR" and we R' is a Brownian 
motion process whose independehf incronent processes dw 
have the statistics 

E[dwdw^] = Idt,        iB[d#] = Oi (3) 

where £[•] indicates the expwtation operator and / indicates 
the identity matrix, #ithdut loss of generality. Fa is assumed 
to have Ml row rank. Our cost fimction is tiie expectation 
of the quadradfc cost fimction suggested in Bittanti et al. 
(1973): 

J[«,T]= lim --E 
k->ookl 

fkt 

I   ix^Qc + t?Ru)dt 
Jo 

(4) 

where T is flie period of a cycle, k is the nimiber of cy- 
41     cles, g k a synmietric nonnegative definite matrix and R 

is a symmetric positive definite matrix. The aiBwer to this 
43     optimization problem is the well-known linear quadratic 

Gaussian controller 

dx = Axdt + Budt + L{dy - Cx - Du)dt, 

u = —Kx, 

45 

(5) 

(6) 

where K is the linear-quadratic regulator gam and L is the 
gain of the Kalman-Bucy filter. 

Observe that if we define e ^ x - jc, the closed loop 
dynamics and cost can be rewritten as 

X A -BK       BK X 

e 0         A-LC e 

+ 
r,     0 

dw. 

" gw      0  ■ X 
u - 

-RIK  R^I^K e 
f 

dt 

J[K,L,t]= lim ^E 
k-*oo kx 

'LQG^LQG)dt 

(7) 

(8) 

(9) 

Note that the dynamics of flie controller are described by 

Ac^A- BK-IX: + LDK, (10) 

and that this niatrix need not be Hurwitz. 
Suppose we were to add a cost term that would penalize 

an tmstable controller. If we constrained the controller to 
have tile same observer structure as before, the dynamics 
and cost would look like 

dxci = Aaxa dt + Ba dw. 

2 — V^cl-^cl) 

J[^,£,T]= lim — £ 
t-*oo KX 

with 

/   iz''z)dt 
Jo 

(11) 

(12) 

(13) 

£[dw dw'f ] = / dt,    E[dw} = 0,    4 = Ix^e^xJ], 

Ad- 

Bel = 

A-BK       BK 0 

0 A-LC 0 

0 0 A^j 

Fi        0 0 1 

Fi     -iFa     0 

L 0 0        Ff J 

e'/^ 0 0 
■J?*%    ^'% 0 

0        0 QI'^^ 

(14) 

47 

49 

51 

53 

55 

57 
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where the new state Xf, with the dynamics of the controller, 
is forced by noise and included in the cost fimction via flie 
weight Qf, To insure that all controller states are peiwlized 
in the cost, it is required that Qt be positive definite and that 
Tf have Ml row rank. 

The cost expression above can be written in terms of the 
covariance of JCd, P ^ [^ci^J]: 

/: lim ix ^ f  (PCdtfC^t)} it, (15) 

subject to 

P = Adt)P + PAdtf + Bci(t)Bdtf, (16) 

P>0, 

where tr denotes the trace operation. Let us partition P into 
nxn pieces as follows: 

Pi     Pn    Pii 

P = 12 Pli (18) 

11     An equivalent expression of the cost is then 

J= lim tr 
k—KX hl^''^ 
+(Pi - Pn - Pit + PZWRK + FaSf} dt (19) 

We can write a Hamiltonian for this optimization problem 
13     in the usiwl way 

^ = ts{PiQ + (Pi - Pi2 - Pji + P2)K^RK 

+PiQt + AiAaP + PAl+BaBl)), #0) 

where 3^ is almost identical to the HamiltoniSn »wM 
IS     in Denham and Speyer (1964) and m similar to the one 

(for a case with no process noise) iKcd in Athans (1968). 
17    Following the standard derivation, the n&essary conditions 

for minimizing / are: " : 

19    Theorem   1   (Pontryagin's  necessary  conditions). The 
following are necessary for MmMtzing /: 

21     (I) Jf is minimized with respect to K andL, 
(2) S^p = -M/dt, yl(fcT) =^0,fbr *: = 0,1,2,..,, 

23     (3) M'A = dP/dt.     ": 

If Jf hM a miniihum and is continuously differentiable 
25     in K and L, a necessary condition for minimizing M' is 

jf^=jfi=0, If we partition .4 in the same manner as P was 
27    partitioned in (18) and assume that there is a steady-state 

stationary solution to the optimization problem, then the 
29     following equatioiB are satisfied at the stationary point: 

M'K = 0 = IRKiPi - Pn - Pi + Pi) 

+ 2D^LHAIPI3 + 4JP23 + AiPi) 

+ 2B'(-AiPi+AiPi2-AnPj2 

+ Ai2P2-A!3Pn-Ai3Pj3 

+ AnPli - A^2iPn - A^P^), (21) 

^i = 0 = lAiLFirJ + 2(AjjPi3 + 43P23 + AiP3)K^D^ 

-2iAj2Pi2 + AjiPn + A2P2 

+ 43P23 + ^23P23 + ^3P3 )CT, (22) 

d^/d( = 0 = AoiP + PAl + BciBl, 

(17)        dP/dt = 0=AlA + AAa + CjCd. 

(23) 

(24) 

2,1,  When is there a steady-state stationary solution to 
the optimization problem 31 

The conditions for determining when an LTI system may 
be stabilized by a stable controller were found in Youla,     33 
Bongiomo, and Lu (1974). The following extension of these 
conditions to the MIMO case can be found in Vidyasagar     35 
(1985): 

Theorem^ 2 )(Parity interlacing property). Let C+e de-     37 
note the extended right half of the complex plane 
({s€C: Re(S) > 0}, together with positive infinity). A     39 
fiant P is strongly stabilizable if and only if the number 
qf poles of P {counted according to their McMillan de-     41 
igrees) between any pair of real C+g-blocking zeros ofP 
0even. 43 

Note that the stable compemator that stabilizes the system 
in the above theorem is a proper matrix transfer fimction of     45 
arbitrary order—^i.e, a strictly proper stabilizing compeiKator 
with the same order as the plant may not exist. However,     47 
there are constructive sufficient condition for stable, strictly 
proper fliU-order compensation (Wang & BeriKtein, 1994).     49 
If such a compemator can be foimd, it can be used as a 
starting point for an iterative scheme to find a stationary     51 
point of our optimization problem (Geromel & Bemussou, 
1979; Toivonen & Makila, 1985, 1987). 53 

3. Some rrauMs on second-order derivative of traces 

The sequel will require some results on second-order     55 
derivatives of traces of matrix functions. The proofs are 
substantially the same for each case, so the proof for one     57 
rqjresentative case h^ been included in Appendix A, 
Each of the other assertions can be proven using similar     59 
arpunents. 

Propositions, Let X,Y,A,B be complex matrices of    61 
appropriate dimension.  Denote the (ij)th component     63 
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o/a matrix by ( )y. TAcw 

oyuoxtj 

dyudxij 

• I^ HXAY^BYC) = cdB^YA^j + [BYC]uaj, 
oykioxij 

dxkidxij 

dyuSxij 

HXAX'^B) = buaji + b,ka,j. 

t[{X'^AYB) = aikbij. 

tt(X'^AY'^B) = aabij. 
dyudxij 

• ^TaT HX'^AY-'BYC) = aalBYChj + [B-^YA^cj. 

4. Producte that convert linear matrix equations Into 
linear vector equations 

4.1. Review of the Kronecker product 

The following well-known resulte can be found in elemen- 
tary linear algebra texts (e,g. Lancaster, 1969, Chapter 8): 

Definition 4 (Kronecker operator). Let #" denote a field. 
ltA£^m-xtt and B€S'„-^p, then the Kronecker operation 
on A and B, written A % B,\% &n mo % np matrix whose 
elements are defined by the relation \A%B\i=artbsjf^hae 
k = (r-l)o + sJ = ii-l)p+j. % 

Proposition S (Kronecker product). If AQ0m-x.n and 
Be^oxp, then the Kronecker operation A^ B is a 
well-defined product. 

Proposition 6 (Kronecker produdt and linear matrix equa- 
tions). Consider the following matrix linear equation 
for the tmknown matrix X€^„xn' AXB — C where 
A,B,C€i ^nxn- We can consider this equation as an abbre- 
viation for t? scalar equations for the if- elements ofX. Let 
us define the "vectorized' versions ofX and C in #",2 by 

K* -^2* ^*] » c  — [C|* C2« 

where Xi», Cj^ dinote the ith row ofX and the Jth row of 
C, respectively. Then the equation AXB = C is equivalent 

37     to Gx=cfor some G e #"„2 xrfl • One can easily verify that 
G = A®B'^. 

39     Proposition 7 (Kronecker product of positive definite 
mattices). If A and B are two positive definite matrices, 

41     then A®B is also positive definite. 

4.2. Another product 

Recall that the matrix equation AXB = C can be trans-     43 
formed to the form (^®5''")x=e, where x and c "vectorize" 
X and C by rows. Now, suppose we wished to express the     45 
matrix equation AX'^B=C as Gx=c, where x and c are the 
same as before. Motivated by this problem, we will define     47 
a new operator. 

Definition 8 (KT-operator), Let ^ denote a field. If     49 
^ € ^mxn and 5 € ^oxp then the KT-operation on A and 

T 
B, written A®B, is defined element-wise by 51 

Orjbsl, 

where k = (r-l)o + s and / = (i - 1)B +J. 

uhh 

Proposition 9 (KT-product). If A e ^„XB andB€ ^oxp,     53 
T 

then the KT-operation A®B is a well defined product. 

Proposition 10. Ut C^^„^„, A€W„xo, X&^p^^, 
B € ^pxn- Let AX^B = C be a linear matrix equation in 
X. ''Vectorize" X and C as follows: 

TiT X   —WuX^k  •" X„^ , ■ i^U ^2, 2* clf. 

Then AX'^B = C is equivalent to the equation (A^B"^) 
X"= C.'\y 

"Hie proofs of the above propositiom are trivial modifi- 
cations of the corresponding proofs for the Kronecker 
product case. 

Remark 11 (Relationship between Kronecker product and 
KT product). If X is a matrix and the column vector x is 
X vectorized by columm, flien there existe a permutation 
matrix S, whose elements are all either 0 or 1, such fliat Sx 
is X"^ vectorized by columns. Then AX'^^B = C is equivalent 

to both (A ® B'^)SX = c and iAm'^)x = c. 

Using the KT product is preferable to iBing the Kronecker 
product and a permutation for two reasons: the notation is 
more compact, and the operation count is lower (the op- 
eration count for computing a KT product is the same as 
that required for a Kronecker product, while multiplymg 
permutation matrices is costly due to the large size of the 
matrix). 

5. Constructing a 17 test 

55 

57 

59 

61 

63 

65 

67 

69 

71 

73 

75 

77 Before the U test can be constructed, we must firet obtain 
expressions for the partial derivatives of Jf and for the 
linearized equations of motion. 79 
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1     5.1. Partial derivatives of M' 

Recall the Hamiltonian for our optimization problem is 

Jf = tr{P,e + (P, - P,2 - Pji + PiW^RK 

+P3Qt + AiAaP + PAl + BaBl)}. (25) 

Note that since P appeare linearly in M', fi^/(dpMdpij)=0 
yij,k,l. 

The second partials of ^ can be foimd using the results 
on second partials of traces with respect to matrices devel- 
oped in Section 3. These results can be expressed in a more 
compact notation if we "vectorize" the parameter matrices 
and write our results in terms of Kronecker products and 
KT-producte. As an illustrative example, we will derive the 
second partial of Jf with respect to K. 

Using the formulas in Section 3, one can find that 

-je(P,K,L,A) 

3 

5 

7 

9 

11 

13 

15 

17 

ARfldtllMI^REiS 
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¥^s..^& ww.^mW^^ 

dkgifdkef 

= Rge[Pl-Pl2-Pn+P2ifH 

+ R,g[Pl-Pl2-Pj2 + P2hf. (26) 

Let dK be a small variation in K. Vectorize 5K by rows, 
i.e. dk(tj-ij„+r = SKgr. Define ^{X,K,L,A)tai as follows: 

^^Jt(P,K,L,A)aL^. 

g=l A=l e=I /=1 
dkgkdkef 

Then, using what we know about Kronecker products tfiid 
Eqs, (27) and (26) we have 

M'(P,K,L,A)a^ = 2R®[Pi- Pn - Pjz + Pil (28) 

In an enturely analogous way, we can define 1, pi, pi2, pi3, P2, 
P23,P3 with respect to L and P. Then*|>fu, ^kp,^ •5*°kp,j> 

19      ■^l^,j> ■^kpj) <^kpj3. •^kpj. ^B. #lp,. <^ljjj> ^Ipij! -^Ipj* 
^ipn' -^ih *'^° ^ determined in tern^ of Kronecker and 

21     KT-products of the system matrices. These expressioiK are 
given in Appendix B, 

23     5.2. Lmearization of the equation of motion 

The covarianCe P satisfies the differential equation 

P{t)=Aa(t)Pit) + Pit)Adtf + Ba(t)Bdtf. (29) 

25 To linearize this bilinear form, suppose that F^,KP,L'^ are 
nominal solutioiK that satisfy (29). Then take small varia- 

27 tions so ^mtP^I^+SP,K=K^+SK,L=L'^+SL. We can 
eliminate the higher-order terms and express the result in 

29 terms of "vectorized" quantities. This is easily accomplished 
using the rules for "vectorizing" matrix equations given in 

31     flie sections discussing the Kronecker and KT producte. For 

instance, 

5pi = i(A- BK^)®I +1 ®{A- B^)]5pi 

+ [(5^)®/ + / ® (B^)]5pi2 

+ [ - 5 ® Pf + 5 ® Pfi - Pf ®5 + pfi&ia, 
(30) 

5p = Fap + G[5k51]. (31) 

A tramfer function fi"om the parameter variations 5k and 51 
to the states 5p can then be computed in the standard way: 

%(s) = (si - F)-^G[Sk{s) Si(s)l 

5.3. Then test 

(32) 

We will now create a JI test for the fixed stmcture strong 
stabilization problein, following the same general strat- 
egy used in the siate feedback case (Bittanti et al., 1973; 
Bernstein &Gilbiit, 1980). Consider nonlinear system (16) 
and associated cost (15). Let (31) be the linearization of 
the dynanucs described in (16). Suppose ako that we have 
foitnl a set of stotic control and observer gaim that meet 
the fir^t-ioMer necessary conditions for optimality. 

Definition 12. An optimal periodic control problem is said 
fb be proper if there existe a period f and an admissible 
control gains K{t),L(t) such that 

J[k{t),Ut%n<J^, (33) 

where J" is the cost corresponding to the optimal 
steady-state solution of the problem, using the static gams 
jf ,£*. Hence, a strong variation in the controller gaim 
from the steady-state solution has a lower cost. 

Note that the term "proper" h^ historically been used 
both to describe the optimality of periodic optimal control 
problems and to describe transfer functions that have more 
poles than zeros. To avoid conflision, we shall always ex- 
plicitly state whether it is a periodic optimal control problem 
or a transfer fimction that is proper. 

J[P + SKit),P + BL(t),x\ < f. (34) 

where J*  is the cost corresponding to the optimal 
steady-state solution of the problem, using the static gains 

33 

The state space equations for this and the other 5p,'s (which 
are given m Appendix C) can be put together into a large     35 
linear system 

37 

39 

41 

43 

45 

47 

49 

51 

53 

55 

57 

59 

61 Definition 13. An optimal periodic control problem is said 
to be locally proper if there exists a period f and admissible 
weak variations 5K(t),5L{t) in the controller gains such     63 
that 

65 
67 
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1     if*,£". Here, a weak variation in the controller gains from 
the optimal steady-state solution yields a lower cost, 

3     Definition 14. Let (P,K,L) be a steady-state admissible 
triple. TTie optimal periodic control problem is normal at 

5     {P,K,L) if the following condition is satisfied for some T: 

rankKe''"-I„)GFG ••• F"-'G]■■ (35) 

Remark 15. Note that (F, <5) controllability is sufficient to 
7     ensure normality. 

For convenience, we will drop the use of functional no- 
tation for Jf and its derivatives—^any usage is assumed 
to occur at the stationary point. Let us define n(s) A 
[5k(s)^ 8l{5f-f. Using the techniques of the previous 
subsections, we can construct M'^,^^^, and H(s), where 
H(s) is the transfer flmction fl-om u(s) to p(5). We also 
know that M'p^ = 0, Jf p„: •« up- 

Theorem  16. If the local minimum  of the optimal 
steady-state problem is normal and the (m x m) Hermitian 

17     matrix 

JI((») = ^"LHUm) + Hi-jmfj^^ + ^„ (36) 

is partially negative for some © > 0, then the optimal 
periodic control problem is locally proper {and hence 
proper). Conversely, if the optimal periodic control 
problem is locally proper, then there exists o > 0 such that 
n((o) is not positive definite. 

Proof. The proof for this theorem is the same as that gi'vfefl 
m Bittanti et al. (1973) and Bernstein and Gilbert|1980), 

25    where the control input is the vectorized paramete^ u.   |D 

Corollary 17 (ImplicatioiK for strictly propesrfjlinte). If 
27     the plant transfer function is strictly ^pper^e,i^D = 0), 

then there is a frequency Q such that We optmal periodic 
29    control problem cannot be locally proper for frequencies 

greater than Q. 

Proof. The magnitude of H^Ja) iavst attenuate at high 
frequencies due to the asymptdtic stability of the stationary 
solution. Hence, nQm)—^ #„ ^ © -^ oo. This means that 
if the optimization prtjbleni Satisfies the Legendre-<;iebsch 
condition, i7( jo)) mtwt be positive definite for large enough 
m. Now, the elemente of ^m are given by 

37 

^kk = 2« ® [Pi - Pn - Pji + P2I 

Jfu = 2DT|[pT ^,3] + 2Z)T|[P3^3] 

-|-2I>''®[Pf3/l23], 

(38) 

(39) 

so since D = 0, Jf^ is positive definite if and only if both 
Jf UE and ^n are positive definite. We know that R, A2, and     39 
FaFj are all positive definite. The quantity [Fi -P12 -PJ2+ 
P2] must be positive definite, since F is positive definite     41 
and [F, - Pn - Pja + F2] = [/ - / 0]P[/ - / of, Hence 
^kk and JPa are the Kronecker products of positive definite     43 
matrices, which meaiK they are positive definite themselves. 
So n(J(o) wjnverges to a positive definite matrix as © -*     45 
00, implying that there is a frequency O such that /I(j©) is 
positive definite for all © > O, By the results of the previous     47 
theorem, the optimal periodic control problem cannot be 
locally proper for frequencies m> Q.    D 49 

We thus have the interesting result that a chattering con- 
trol that is a weak variation from the static optimum can     51 
never produce a better cost flian the static optunum for any 
plant with a strictly proper transfer flmction, 53 

6. Deigning periodic optimal controller 

Once we have determined fliat only periodic controller 
gains can strongly stabilize the system, or if the il test has 
established that periodic gtfins ofier better performance than 
static ones, itkeinSilM to design these gaim. We base our 
design methoddlq^ on standard optimal periodic control 
design piactiefcs, stich as those in Speyer (1996). 

Note first that choosing periodic gains makes the system 
mifrices Aa and Ba periodic by Eq, (14). This in turn makes 
Jie solution to the Lyapunov equation (16) periodic, with a 
jperiBid'tiiat is the le^t common multiple of the periods of 
|hie Memento of .^si and Ba (from the Lyapunov Lenmia of 
Bittanti, Bolzem, & Colaneri, 1985), 

Hence, if we specify a periodic fimctional form for the 
gains K and L, such as 

N 

K = Ko + ^Kki sm(tol) -|- Kia cos(kat), 

N 

L = Lo + ^2 ^*i sin(to^) + Lk2 cos(tor), 
*=i 

then we can optimize cost (15) with respect to the parameters 
m,{KkuKa,LkuLia), and the elemento of P(0). This opti- 
mization is subject to the coiKtrainto that P(0) is a positive 
definite matrix and that F is periodic with period T = 2jt/(B, 
Alternatively, aperiodic spline flmction (DeBoor, 1978) for 
the gains can be chosen, with the constrainte 

(37) ^(0) = ^(T), 
it 

K 
1=0 

Lm=L(x), 
At 1=0 

At 

At 

K 

t=x 

and the collocation points as optimization parametere. 
Again, the elemente of P(0) appear as optimization pa- 
rameters and in the constraints that F is T-periodic and 
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Fig, 1. Minimum ei^nvalue of IHJat) vs. ct>. 

1     P(0) is positive definite. The constraint that P(0) is positive 
definite can be phrased in two ways: 

(1) Require the leading principal minors of F(0) to be pos- 
itive. 

(2) Parameterize P(0) by its' ^^^"^ decomposition 
P(0) = «(0)S(0)#(0)'^, where # is unit upper trian- 
gular and & is diagonal, P(0) is then positive definite if 
and only if all diagonal elemente of ®(0) are positive. 
The periodicity constraints on P are tiamferred*i>' the 
parameters ^ and B, whose differential eguafiom are 
given in Tapley and Peters (1980). 1.1 

13 

15 

17 

19 

21 

These nonlinearly constrained optimiratiojl priibleims can 
be solved by standard mefliods such as ISqulnfial Quadratic 
Programming (Wilson, 1963; Boggs & ToUe, 1996) or 
accelerated gradient projection (Sj^ylr.'Kelley, Levine, & 
Denham, 1971), s 

Finally, note that there is ho restriction in the above prob- 
lem formulations requirihg exiStgince of a static solution. But 
nonlinear optimization problems should never be undertaken 
lightly—^the H test indicates when it is useful to attempt the 
difiicult process of tiihfe-vaiying controller generation if a 
strongly stable LTI solution has already been found. 

23     7. Examples 

7.1. n test for a plant with a DC term 

25        Consider the linear system and cost given by 

A = l,    B=l,    C=1.5,    D=l,    fi = l, 

r2 = i.   fi=i.   R = i,   Qf=o.ou   rt = h 

Note that the open loop transfer flmction, (s + 0.5 )/(s — 1), 
meets the farity interlacing property (Youla et al,, 1974)     27 
and, theffefore, the plant may be stabilized by a stable lin- 
ear time itiVariant controller. However, the resulting con-     29 
v^tidial LQG controller is imstable, 

% static solution for the modified cost given by (13) was     31 
.found using the methods in Toivonen and Makila (1985), 
The results of the local optimization were K^ = 3,9112,     33 
£" = 1.1774. The pole of the static optimal controller was 
then —0.0724. The static optimum gains were also calcu-     35 
lated for several other values of R. The JI test was then 
performed for each cost function and corresponding static     37 
optimal controller. For each case, the minunum eigenvalue 
of n is plotted vs. frequency in Fig. 1. Note that when     39 
,R = 1, the minimum eigenvalue of JI is never negative. 
Hence, there is no iiwtence at which a lower cost can be     41 
realized via periodic gains. However, if R is reduced, the 
cost may potentially be reduced below the static optimum     43 
value. When R = 0.3, the minimum eigenvalue of JT fells 
below 0 for frequencies between 2 and 10.5 rad/s. If R     45 
is reduced to 0,2, the minimum eigenvalue of il is nega- 
tive for all firequencies greater than 2 rad/s, which means     47 
a chattering solution may reduce the cost below that of 
the static optimum. Note that the plant's transfer function     49 
is not strictiy proper, so the restriction on the optimality 
of high frequency gains given by Corollary 17 does not     51 
apply, 

7.2. n test for a flexible structure ^   53 

The problem of positioning the tip of a flexible robot 
arm using only sensors and actuators at the base of the arm     55 
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1     can be described by the following linear system and cost 
parameters: 

A-- 

11 

■ 0     1 0 0" '0 

-1    0 1 0 
B = 

1 

0     0 0 1 0 

1      0 -1 0 0 

"0" "0    0 0    0' 

0 
s Q = 

0    0 0    0 

0 0    0 1    0 

1 0 0 0 0 

rt = 

c = [iooo],   D = o,   r2 = ii 

*=io-3,   0 = 10-%   ff^ii; 

where I4 denotes the tour-diniensional unit matrix. The 
open-loop transfer fuiiption for this system is ((s + j) 
(s-j)yis^(s + WIi42|)(s - 1.4142/)), which satisfies the 
parity interlacing pfofperty (Youla et al., 1974). This plant 
may thus be stabilized by a stable LTI controller. Despite 
this, the LQQ gains yield an iimtable controller. 

A static solution for the modified cost given by (13) was 
found using the methods in Toivonen and Makila (1985). 
The strongly stabilizing results of the local optimization 
were 

The n test was then performed; Fig. 2 plots the minimum 
eigenvalue of J7 vs. frequency. Note that the high-frequency 
behavior is as Corollary 17 predicts, and that the opti- 
mpStibn problem is locally proper only across a very 
nterow|[requency band. 

tJM. Periodic optimal control 

Strongly stabilizmg periodic optimal controllers were 
generated for the one-dimensional plant described at the 
beginning of ttie section with parametere Q=1,R = 0.2, 
using the methods described in Section 6. The performance 
of these controllers can be evaluated by comparing them 
to standard LQG optimal controller, because the optimal 
LQG cost when the strong stability constraint is removed 
fonns a lower bound for the cost that a strongly stabilizing 
controller can achieve. Using Sequential Quadratic Pro- 
gramming, we calculated strongly stabilizing optimal values 
for K and L when they were each parameterized by either 
three elements in a harmonic series or by 10 collocation 
pomts for a cubic spline spaced equally in a period. Table 1 

Table 1 
Efficiency comparison of compensators 

Controller gain ^pe        Cost by Bq. (9)        Cost by Eq. (13) 

*: = [8.1188 2.0586 -3.7766 4,9878], 

13      L = [7,8756 6,0895 5,0344 - l,734lf, 

LQO 3.6S44 Undefined 
Static gains 4.0444 4.0992 
Three harmonics 3.9636 4.0054 
10 point spline 3.9295 3.9685 
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Fig. 3. Controller gain. 

2.5 

1.8 ■ 

1.6 - 

1.4 - 

%S. - 

1  ■ 

0.6 - 

0.4 

A 

1 

A — ouMo spline 

1        \ *'^' •   three harmonics \ •'** \ X "'*'. - ;\ *, .   \ ' % \A \ 

■^ 

. Xs . 

^ ̂ . V static ^lue                       \   % 
^ 

, "X'. , 
V\ • V • 
\*. . \*. • 

■ \ *. ' 1 •. • 
\ •, , \ •, . 
\    • * 1    • ,* 

0.5 1 is 
Time (seocmds) 

Fig. 4. Estimator ^n. 

2.5 

1     compares the costs achieved by these compensators with 
the costs achieved by the strongly stabilizing static gains 

3     and the unstable LQG compeiKator. Note that the cost 
corresponding to the spline-parameterized strongly stabi- 

5     lizing controller was 29% closer to the lower bound LQG 
cost than fliat of the optimal strongly stobilizing static 

7    controller. 
Fip. 3 and 4 plot the optimal values of the controller gain 

9    K{t) and the estimator gain L(t) over two periods, where 

the gains are parameterized both by a spline with 10 col- 
location points and by three harmonics of a Fourier series.      11 
Note that the shape of the gains are approximately the same 
for both parameterizations. More interestingly, observe that     13 
when the value of the controller gain is large, the value 
of the observer gain is small, and vice verea. The optimal     15 
strongly stabilizing periodic controllers thus oscillate be- 
tween controller-dominant and observer-dominant phases in     17 
a smooth nanner. 
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Fig. 5. Qosed-loop responses to a sinusoidal disturbance. 

1 The smoothness in the variation of the cubic spline con- 
troller's gains appears to enhance disturbance rejection rel- 

3 ative to controller comtaicted using Ae methoi in Savkin 
and Petereen (1998). Fig, 5 illustrates the closed-loop re- 

5 sponses to the distoirbance sin(^) for both types of controller. 
Note also that the Savkin-Petereen controller for this exam- 

7 pie was chosen wifli the smallest possible sampling period 
that would guarantee strong stability. When larger samplin'g 

9 periods were used, the SavMn-Petersen closed-loop sys'tem 
exhibited even larger deviations. 

11     8. Conclusion 

3 and 4 enables ilSny extensions to the work in Athans 
(1968) and Deiflmm and Speyer (1964) on minimization 
of functions dependent on matrices. In particular, the tech- 
tripes usefl here can be trivially modified to deal with 
pfftblfenB involving optinrizmg decentialized controllers for 
systems with fixed modes (Wang & Davison, 1973), 
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A U test applicable to a linear-quadratic-Gaussian strong 
13     stabilization problem has been developed, determining when 

periodic coefficients in the gain matrices can potentially re- 
15     duce flie cost. One important restriction to tiie test is that 

a stable, strictly proper conifrollfr of plant order must be 
17    found to ensure the existence of a strongly stabilizmg static 

solution, Obviously,Sf no static solution existe, the optimal 
19     strongly stabilizing controller is time vaiymg. 

Techniques welre then developed for synthesizing opti- 
21     mal periodic strongly stabilizing controllers. Because these 

techniques aire cOinputationally intemive, the 11 test is valu- 
23     able for determining in advance whether a periodic con- 

troller may improve performance. An example demonstrated 
25     that a strongly stable periodic optimal controller generated 

with our methods rejected peraistent disturbances better than 
27     competing methods. 

Methods used to derive the H test in this can also be ap- 
29     plied to other control problems. The material in Sections 

Appendix A. Constructing second partiab of trace 37 
functions 

The proofs of the assertions in Proposition 3 all fol-     39 
low the same general form. Therefore, only the construc- 
tion of (fi/dyMdx,j)ix(XAY'^BYC) is provided here. Each     41 
of the other assertiom may be constructed using similar 
arguments. 43 

Let X have dimension mx n and let Y have dimension 
5x p.We know from Athans (1968) that 45 

-r—txiXAY'^BYC) 

dxtj 
H^Y'^BYCX) 

-. {(AY'^BYCflj = [C'^Y'^B^YA%. (A.1) 
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1     Now, [FVF]J, can be expressed as Y^^^ £^, y^Agyrt,        jf ^^^ = o. 
so 

p     m 

[C'Y'B'YA\ = J] 53 c,,[FVyj^^^^^ 

p     m 

$=1  <=1 

(A.2) 
s=l   (=1 

Hence 

'TVTDTVJTI -—— tr(X4F'SFC) = ^[C F'B' F^'L- 

m 

5=1        g=I »=1        r=I 

C|,P'F^'],^. + [5FC]«a,7. 

Appendix B. Second partials of the Hamiltonian 

Using the definitions found in Section 5, the second par- 
tials of M' have the following form: 

^jQf =2R® [Pi -P12 -P,2 + P2I 

jeLi = 2A2®[r2rli 

JtKP, = [RK]h + [RK] ® I 

-[B^Ailh-lB^Ai]®!, 

^m = IB^^tzl ®I + [B^Aii]®! 

+ [RK]®I + [RK]m 

(B.1) 

(B.2) 

^KPn = -2[RK] 01- 2[^]i/ 

+ 20^ At] 01 + 2pT^,2]l/, 

^XPia =-2[B^{3]®/ + 2[D'£'4J]® J 

-2[BT^,3]I/, 

^XP23 = 2[B^Aii]0l - 2[JT^T ] ® / 

+2[DVAJ3]®I, 

^KL = lD^mP\Axi\ + 2Z>''|[P3^3] 

+ 2Z)'r®[P£^23], 

^P-t) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

l^LH = -A20C -A2®C, 

T T 
^m = -^3®C + A3®[DK] 

(B.IO) 

(B.ll) 

-A3®C + Ai®[DKl (B.12) 

^u>„ = -242 ® C, (B.13) 

^LPn = -2/II3 ® C + 2/IJ3 ® [DK], (B. 14) 

■^xi-a, = -2^3 ® C + 2/IJ3 ® [Dr] - 2^23®C,     (B.15) 

where / denotes anxn identity matrix. 

(A.3)        Appendix C. Linearized dynamics of the covariance 

In Section 5, small variations were made to parameters 
in the covariance Lyapunov equation. Using the properties      11 
of the Kronecker and KT products, the expressions for the 
small variations in the covariance nmtrix can be written     13 
compactly as 

SPi = [(A - BK)m + I®(A- BK)]5Pi 

+ mK)0l + 10 (BK)]5Pi2 + [-B0Pi 

+B ® Pn -P\®B + Pi20B]5K, (C.1) 

(B.35      :^Pi = U4-LC)®I + I®(A- LCyiSPi 

(C.2) 

+ [-l0(P2C^)-(P2C^)®I 

+10 (LrzrJ) + (Lr2r1)0i]SL, 

SP3 = [(A-BK-LC + LDK)0I 

+I®(A-BK-LC + LDKyiSPi 

T 
+ [ - B ® P3 + (i^) ® ■P3 - i'3®5 

+ P3®(2,D)]M + [ - / ® (PaC'^) + J ® (PiK^D^) 

-(PiC'^)0l + (P3K^D^)0l]5L, (C.3) 

aPi2 = [(5r)®/]5P2 

+ [(A - BK) ®I+I®(A- LC)]5Pi2 

+ [-B0Pj2+B0P2]5K 

+ [-(Pi2C'^)mSL, (C.4) 

5Pi3 = [(A - BK) ®I + I®{A-BK-LC + LDK)] 

xSPn + [(BK) 01]5P23 + [ - 5 ® PJ3 
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+ B ® Pfj - Pi3®5 + Pi3®(iD)]5A: 

(C.5) 

5^23 = [(A-LC)®I + I®(A-BK-LC + LDK)]SP23 

+ [ - P23S5 + P23l(il>)]5^ + [ - / ® (PlC^) 

-(PiiC^W + iPiiK^D^WlBL. (C.6) 
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A generalized least-squares fault detection filter 

Robert H. Chen*-t, and Jason L. Speyer 

Meckanical and Aerospace EnsineenngDepar^en, University of CaliforMa, Los Angeles 
Los Angeles. CA 90095-1597, U.S.A. ' 

SUMMARY 

and block otherfaults 4icrie3 edfuSr^^^^^^^^^^ ' f«'« ^f' -"^d the target fault 
with a generalized least-squares cost criterion whth 1 ? 1"^"^ 'f '*T*'* ^ro™ «o'^"8 a min-max problem 
but insensitive to the nuScffaS IHs"Town ?L^^^^^^^^ ""''' *''' ''''^''i '™^"'"^'«^*>« ^^^S^^ f^"''- 
fault detection filter such that in th7limi?wE tte wStlfon^^^^^^^ f f^P"*^ ^^^''^ ^'^^«'«> 
least-squares fault detection filter bee™ S eTuSenfS 2 ? t "'^^ '^'f''' ^'™' **= generalized 
a reduced-order filter. Filter dm^nrSnhelJ^lTIflu'i^^'' ""P"^ °^'''''"'' ^^^^^ ^ere exists 
systems. Copyright © 2oS lotfwLy & SontLw ""'" ""^-J"^""'"* »nd time-varying 

°'''' sy"""'" '"' identification; unknown input observer; worst case design; time-varying 
KEY W' 

1. INTRODUCTION 

Any system under automatic control demands a high degree of system reliability This requires 

need for h!^f       faulty component One approach, analytical redundancy which reduces the 

aul r^rJaceT -f"^" " ^«8'-target fault and possibly several nuisance failtl The notice 
taults are placed ,n an invariant subspace which is unobservable to the residual   Rece^tlv 

uiit-ci idiniies ana applicable to time-varymg systems [2 3] 

m al'^d'T.r' ^ ^fT^^!f least-squares fault detection filter, motivated by Chung and Speyer 
^"^ ""' ^^y^°" ""'^ "° M, IS presented. A new least-squares problem wiih an indefaite'cost 

' B-mail: chrobert@talus.seas.ucla.edu 

SnISiS So~ Calitofa SrtaLtof ? ''"""''^ ~«tract/gra„t number: F49620-97-,-0272 
ponsor. cawomw Department of Transportation; contract/grant number: 65A0013, MOU315 
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Slman Itl! m     H  n ^ ™""f'' P™""" ^^ generaliziBg the least-squares derivation of the 

Re^JnceBfi^^^ 

;t where 
Its are placed in a minimal (C A\ „„„!,.      u-vT     L ""-"'"^<»i"'"i systems, me nuisance faults are 

2. PROBLEM FORMULATION 

Consider a linear, observable system with two failure modes [1,2] 

x = Ax + Bu + F,ix, + F2ti2 (la) 

y = Cx + v ^^^^ 

where «is the control input, j; is the measurement, v is the sensor noise u, is the tarset fault «t,rf 

nfotrrand .   mtdrf tf .     ^ ^'"^.t^^-^arying and continuously differentiable. The fkre 
Tnd ? inrffi'^^' ^°^''*" toe-varymg amplitude of the failure while the failure signatures F! 

this modtlsed ; I^e4iue t^^^^^^^^ ?■ "Tf^^'^' ^" ^^^^^^"^^ C^'^], it is shown that 
fault. Ti,.r. o    .    aeiermme the fault detection filter, represents actuator, sensor and oknt 

Assumption 2.1. 

Fi and Fj are output separable. 

Assumption 2.2. 

For time-invariant systems. (C. ^, F,) does not have invariant zero at origin. 

Copyright © 2000 John Wiley & Sons, Ltd. ht l AA   , r^        ,.      , 
int. J. Adapt. Control Signal Process. 2000; 14:747.757 
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The objective of blocking the nuisance fault while detecting the target fault can be achieved by 
solving the following min-max problem: 

1 
mm max max - ilMlh' - IMlra;' - lb' - Cxill-.) Ax-\ \\x(to) - Mk (2) 

2' 

subject to (la). Note that, without the minimization with respect to fi^, (2) reduces to the standard 
least-squares derivation of the Kalman filter [4], t is the current time and y is assumed given. Q,, 
22, V and ITo are positive definite. >• is a non-negative scalar. Note that Qj, Q^, IIo and y are 
design parameters to be chosen while V may be physically related to the power spectral density of 
the sensor noise because of (lb) [4]. The interpretation of the min-max problem is the following. 
Let /if, /if and x*(to) be the optimal strategies for /ii, /ij and x((o), respectively. Then, x*(t\ F,), the 
X associated with /if, /if and x*{to}, is the optimal trajectory for x where T 6[fo, r] and given the 
measurement history F, = {J(T)| to < T < f}. Since {x, maximizes y - Cx and /i^ minimizes 
V - Cx, y - Cx* is made primarily sensitive to /ij and minimally sensitive to fi^. However, since 
X* is the smoothed estimate of the state, a filtered estimate of the state, called x, is needed for 
implementation. From the boundary condition in Section 3, at the current time t, x*(t\ F,) = x{t). 
Therefore, y - Cx is primarily sensitive to the target fault and minimally sensitive to the nuisance 
fault. Note that when Q, is larger, y - Cx is more sensitive to the target fault. When j is smaller, 
y - Cx is less sensitive to the nuisance fault. In Reference [2], the differential game blocks the 
nuisance fault, but does not enhance the sensitivity to the target fault. In Section 5, it is shown that 
the filter completely blocks the nuisance fault when y is zero by placing it into an invariant 
subspace, called Ker S. Therefore, the residual used for detecting the target fault is 

r = H(v.-Cx) (3) 

where x, the filtered estimate of the state, is given in Section 3 and 

H:<&^<&,       KerH=CKerS,   H = 1 - C Ker S[(C Ker S)^C Ker S]-'(C Ker S)^    (4) 

KerS is given and discussed in Sections 4 and 5. 

3. SOLUTION 

In this section, the min-max problem given by (2) is solved [2,4]. The variational Hamiltonian of 
the problem is 

■«" = id^iilr' - ll/i2ll;c-> - ||y - Cx||-,) -1- X\Ax + Bu-¥ Fi/ii + F2/J2) 

where le^" is a continuously differentiable Lagrange multiplier. The first-order necessary 
conditions [4] imply that the optimal strategies for /ij, /i^ and the dynamics for X are 

A^-QiFjl,   Ii*2=-Q2FIX,   X^-A'X-CV-'iy-Cx) 

Copyright © 2000 John Wiley & Sons. Ltd. I„t. j. Adapt. Control Signal Process. 2000; 14:747-757 
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with boundary conditions 

^(to) = no[x*((o)-Xo3,   A(f) = 0 (5) 

By substituting /if and /<f into (la), the two-point boundary value problem requires the solution to 

X 
A        ^yFiQiFl-FiQtFl 

with boundary conditions (5). The form of (5) suggests that 

X = n(x* - x) 

+ Bu m 

(7) 

where TL(to) = Ho, x(£o) = XQ and x is an intermediate state. By differentiating (7), using (6), 
adding and subtracting II^x and C'^V~^Cx, the following dynamic filter structure results: 

ni = TiAx + HBU + C^V-%> - Cx),   x(h) = xo (8) 

tl==IiA + A^Ii + n( -F^Q^FJ - F,Q,Fj)ll - €:"¥-'€,   Tlih) = Ho (9) 

Since x* = x at current time t (5), the generalized least-squares fault detection filter is (8). Note 
that (8) is used by the residual (3) to detect the target fault. 

4. LIMITING CASE 

In this section, the min-max problem (2) is solved in the limit where y is zero [2,5]. When y is zero, 
there is no constraint on ^^ to minimize y - Cx. Therefore, the nuisance fault is completely 
blocked from the residual which is shown in Section 5. 

In the limit, the min-max problem (2) becomes 

1 '•' 
mm max max - 

Ml >»i       JC(to)   2 
(i/iiilr' - IIJ - Cxill-.) dT -- ||x(fo} - xoii (10) 

This problem is singular with respect to /ij- Therefore, the Goh transformation [5] is used to form 
a non-singular problem. Let 

By differentiating a, and using (la). 

^2(5) ds,   «! = X — Fjf^i 

ai = Aai+Bu + Fiiii + Bi4>i (H) 

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757 
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where ,Bi = AF^ -F^.By substituting a^ into (10), the new min-max problem is 

mm max max - 
fi     4t   stidl) 2 Cll/'iiir' - IMhcv-'cF, - \\y - C«i||^-. +(y- CatfV-'CF^4,, 

+ <t>MC^V-Hy - Ca,)-} dr -1 ||a,(t|) + F.Uti) - Xoli (12) 

subject to (11). If FJC^F-^CF, fails to be positive definite, (12) is still a singular problem with 
respect to #i. Then the Goh transfornnation has to be used until the problem becomes 
non-smgular. If FjC^V' CF2 = 0, let 

#2(T) = bi(s) ds,   ttj = tti - Bi<l>2 

Then, d2 = Aa2 + Bu + Fin^ + B^^j where Bj = ABi - 61. If FlC^VCF^ > 0 the Goh 
transfomation is applied only on the singular part [6]. The transformation process stops if the 
weighting on ^„ B,C V-'CB^ is positive definite. Otherwise, continue the transformation until 
there exists B, such that the weighting on 4>„ Bj^.C'V-^CB,.,, is positive definite. Then, in the 
limit, the mm-max problem (2) becomes 

mm max max - llhWh'- \\Mk_,av-^cB,., 

+ <l>lBl.,C'V-\v - Ca,)1 dt - j \\aM) + I#(4) - Uk 

\y - CaS-' + (y - CaufV-^CB^^^<t>^ 

(13) 

f}^% to 4* = ^«. + B« + FiMi + B*4 where S = [F^ B, B, ••. £,_,] and f = 
ypi #2 ■••#*]. The mm-max problem (13) can be solved similarly to (2). Therefore the 
denvation [6] is not repeated here. The limiting generahzed least-squares fault detection filter is 

Si = SAx + SBu + CSB,(Bl_,CTF-'CB,_,)-iBj_,CTF-> + C^flTp,-!^-,^ _ ^.^    ^j^j 

where 

-S = SA + rs + S[B,(Br_iCTF->CB,_,)-«Br - F,Q,FJ2S - Q-'lFV-'RC     (15) 

C V C subject to xht) = xo and S(tt) = Ho - noSd^noD-iSTn^. However. (14) cannot 
be used because S has a null space which is shown in Theorem 4.1. Therefore, a reduced-order 
filter for (14) is derived in Section 6. 

Theorem 4.1. 

SlBt,-, Bu-2 -Bi F2] = 0. 

Proof. The proof is similar to Reference [2] and can be found in Reference [6]. Q 
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5. PROPERTIES OF THE NULL SPACE OF S 

In this section, some properties of the null space of S are given. It is shown that the null space of 
S IS equivalent to the minimal (C, A) - unobservability subspace for time-invariant systems and 
a similar mvariant subspace for time-varying systems. Therefore, the limiting generalized least- 
squares fault detection filter is equivalent to the unknown input observer and extends it to the 
time-varying case. The minimal (C, ^)-unobservability subspace is a subspace which is (A - LCy 
invariant and uoobservable with respect to (HC, A - LC) for some filter gain L and projector 
H [1]. One method for computing the minimal (C, ^)-unobservabilitv subspace of F^ called 
^2 here, is ^a = ^^ ® n d] where #S = [B,_, B,_3 - B^ FJ is the minimal (C, ^)-invari- 
ant subspace of fj and f^ is the subspace spanned by the invariant zero directions of (C, A F,) 
Note that the associated H is 

H:^-.^,   KerH = CS,.„   H = I - CB,.,l(CB,^,fCB,^^2-\CB,^,f        (16) 

Note that Ker H = Ker H. 

Theorem 5.1 shows that the null space of S is a (C, ^)-invariant subspace. Theorem 5.2 shows 
that the null space of S is contained in the unobservable subspace of (HC, A - LC). 

Theorem 5.1. 

Ker S is a (C, ^)-invariant subspace. 

Proof. The dynamic equation of the error, e = x- x, in the absence of the target fault and 
sensor noise can be obtained by using (1) and (14): 

Si = ISA + SBdBj^.C^V-'CB.^r'Bj^iCV-'C + C'^lTV-'ilCJe 

because SFj = 0. By adding Se to both sides and using (15), 

d 
Iz-'lT -(Se) = - {[^ - 5,(Bl-jC-^F-iCB,_,)-^BL,CTF-»C] 

+ Sl-F,Q,FJ + BM-tCV-'CB.-r'BUSe (17) 

If the error initially lies in Ker S, (17) impHes that the error will never leave Ker S. Therefore, 
Ker S is a (C, 4)-invariant subspace. r-|' 

Theorem 5.2. 

Ker S is contained in the unobservable subspace of (HC, A — LC). 

Proof. Let f € Ker S. By multiplying (15) by C from the left and C from the right, 

^(i7sQ = i:-'cm^v-'Hcc = 0 
dT 
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Then   HCC = 0 because HCC = 0 and KerH = KerA  From Theorem  5.1,  KerS is  a 
g 4-mvanant subspace. Therefore. KerS is contained in the unobservable subspace of 

(HC, A - LQ. ^       ^ 

From Theorem 4.1, CKevSsCB,.,. From Theorem 5,2, CKerSsCB..^. Therefore 

u^f-^ ^ ^^"'^ ^"^ ^ ^^^ '^ equivalent to 8 (16). Note that (16) is a better way to form i 
which IS used by the residual (3) because it does not require the solution to the limiting Riccati 
Equation (15). 

For time-invariant systems, it is important to discuss the invariant zero directions when 
designing the fault detection filter. The invariant zeros of (C, A. F^) will become part'of the 
eigenvalues of the filter if their associated invariant zero directions are not included in the 
mvanant subspace of F^ [l]. From Reference [3,6], the null space of S includes all the invariant 
^ro directions if the nuisance fault direction is modified to the invariant zero directions 
therefore, the mvanant zeros will not become part of the filter eigenvalues. From Theorem 4 1 
and modified nuisance fault direction, the null space of S contains the minimal (C, 4)-unobserva- 
bility subspace of F^. By combining with Theorem 5.2, the null space of S is equivalent to the 
minimal (C, 4)-unobservability subspace of F^, and the limiting generalized least-squares fault 
detection filter is equivalent to the unknown input observer. Note that the invariant zero and 
minimal (C, ^)-unobservabiIity subspace are only defined for time-invariant systems For time- 
varymg systems, Theorems 4.L 5.1 and 5.2 imply that the null space of S is a similar invariant 
subspace. 

Remark 1. 

In order to detect the target fault, F, cannot intersect the null space of S which is unobservable 
to the residual If it does, the target fault will be difficult or impossible to detect even though th- 
filter can still be derived by solving the min-max problem. If P, does not intersect the null space of 
S, Fi and Fj are called output separable [1], and the output separability test can be stated as 
CB^.. 1 n CBi-i = 0 where Bj- j is the Goh transformation of Fj. 

6. REDUCED-ORDER FILTER 

In this section, the reduced-order filter is derived for the limiting generalized least-squares fault 
detection filter (14). The reduced-order filter is necessary for implementation because (14) cannot 
be used due to the null space of S. Since S is non-negative definite, there exists a state 
transformation F such that 

r^sr = s   0' 
0   0 (18) 

where S is positive definite. Theorem 6.1 provides a way to form the transformation. 

Theorem 6.1. 

There exists a state transformation F where 

[Z KerS] = r 

Copyright © 2000 John Wiley & Sons, Ltd. 

"Zi     0' 
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Z IS any n x (« - k^ continuously differentiable matrix such that itself and Ker S span the state 
space where n = dim J" and k^ = dim(Ker S). Z^ and Z^ are any (n - k^) x(n- fc,) and A', x k^ 
mvertible continuously differentiable matrices, respectively. Then, the T obtained from (19) 
satisfies (18). ' 

Proof. 

KerS = r 0 
=> ST 

'0' 

U2J U2J 0 =^ r'^sr "0' 

Zi 
= 0 

Since Z^ is invertible by definition and T'^ST is symmetric, (18) is true. D 

Note that Theorem 6,1 does not define F uniquely and F can be computed a priori because 
Ker S can be obtained a priori. 

By applying the transformation to the estimator state, p-'x A ^ = [^| f,f. Bv multiplvincr 
(14) by r from the left, using rr"' = I, and adding rsrf-\x to both sides, the'limiting filter 
can be transformed into two equations, 

S)fi = S(Aii -r„)jf, + 5(^12 - ri2)if2 + SMiu 

+ lSG^(DlcXV-'C2D,r'DlClV-' + CWV-'H2(y - C,n, - ^jh)        (20a) 

0 = CWV-'H(y - Cnt - C.Jz) (20b) 

where 

r~T = 
J'z I    Til 

s r-»/ir = 
A21 

-4,2" 

^22_ 
s 

= 
N2_ 

, r "B,. 1 = 
J 

0 

^2 

, r-^B = Ml' 

M2 
,  cr = [c, c,] 

, r-% = 

Note that T  ' and f can be computed a priori from (19). From (20b), 

HC2 = 0 (21) 

because ,v - C,)fi - Cj^j is arbitrary. By multiplying (15) by F^ from the left and F from the 
nght, subtracting F^SF and TSf from both sides, and using FF"' = /, the limiting Riccati 
equation can be transformed into two equations, 

0 = SiA^^ - F,a - G^iDlClV-'C^D^T'DlClV-'C^l (22) 
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Note that this filter is equivalent to the optimal stochastic fault detection filter [12] which is an 
approximate unknown input observer. 

4. LIMITING CASE 

In this section, the robust multiple-fault detection filter is determined in the limit as y,- -* 0, 
i = 1 • • • j, when there is no complementary subspace. It is shown that, its = q, the filter places 
each associated nuisance fault into the xmobservable subspace of its associated projected 
residual for both time-invariant and time-varying systems. Therefore, the filter becomes 
equivalent to the RDD filter in the limit and extends the RDD filter to the time-varying case. In 
Section 4.1, the geometric structure of the detection filter is given [3]. In Section 4.2, the robust 
multiple-fault detection filter is determined in the limit. In Section 4.3, the conditions to ensure 
that the faults can be isolated are discussed. 

4.1. Geometric structure of detection filter 

The BJD filter places each fault /t,- into an invariant subspace ^ [3] where 

^, = w}m n (21) 
^i is called the minimal (C,^)-unobservabili1y subspace or the detection space of iv. #/ is the 
minimal (C,J)-invariant subspace of/^- given by 

#; = ImL/;,,  ••• A^^^ft,, fi,2 ... J««^^  ■■• fi,p,  ■■■ A^'-'^fi^p^ (22) 

where ftj is the jth column of i^-, ^y is the smallest non-negative integer such that CA^ufij^O 
and pi = dim Fi. "f] is the subspace spanned by the invariant zero directions of (C,/4,i^), The 
RDD filter plaws each associated nuisance fault fii into an invariant subspace #} = [^i ... 
^•_i ^+1 ■ • • S'g] which is the unobservable subspace of (^C,A — LC) where L is the filter gain 
and H{ is given in (9) [3]. Therefore, each associated nuisance fault is in the unobservable 
subspace of its associated projected residual. 

For time-varying systems, the minimal (C,^)-invariant subspace of/^- is [10] 

Wi = lm\b^fi ... b^fi,^ bixo ' • • btxs,^  • • • bt^ptjo ■ • • fti,BA.«] (23) 

which is found from the iteration defined by the Goh transformation (10). For time-varying 
systems, the minimal (C^)-imobservability subspace cannot be determined by (21) because the 
concept of invariant zero is for time-invariant systems only. 

Remark 1 
Equations (22) and (23) produce the correct invariant subspaces only when Rank(C#J) = p,. If 
Rank(C'#()<p„ a new basis for Ft can be obtained such that Rank(C^) = pi [17]. For 
example, for time-invariant systems. Ft = [f^ /J where /}j #/;,2 and Cfi^i = C/5,2#0. Then, 
-W, = Im[^-,i fi,t\ from (22), Since Rank(Cirj) = 1, ' (22) does not produce the 
correct invariant subspace. By using a different basis for Fi, e.g. [f^ f^ — fi^, #} = 
Im[/;-,i fi^i - fty. A(fij - ft^z)] from (22) which is equivalent to Im[/},i Xa A(fi,i - fi.2)l 
Since Rank(C#J) = 2, (22) produces the correct invariant subspace using this new basis of Fj. 
This invariant subspace can also be confirmed by using the recursive algorithm given in 
Reference [3], 
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4.2. Limiting robust multiple-fault detection filter 

In this section, the robust multiple-fault detection filter is determined in the limit as y, -^ 0, 
i=\---s, when there is no complementary subspace and s = q. The filter for time-invariant 
systems is considered first. Then, the filter for time-varying systems is considered in Remark 3 at 
the end of this section. First, it is assumed that in the limit, #i • • •#, are (A - iQ-invariant 
where L is in (14), This will be shown to be true later. Then, the filter gain (14) is simplified in the 
limit by using Lemma 4.1 so that the simplified filter gain does not require the solution to the 
two-point boundary value problem, (12) and (15). Lemma 4.2 shows that the simplified filter 
gain minimizes the cost criterion. Therefore, the simplified filter gain is equivalent to (14) in the 
limit. Lemma 4.2 also shows that (9) is the optimal projector in the limit. Finally, Theorem 4.3 
shows that #1 • • • #, are {A - iC)-invariant where L is the sunplified filter gain. Therefore, the 
filter becomes equivalent to the RDD filter in the limit. Corollary 4.4 shows that ^i • • • ^, are 
{A - £C)-invariant where L is the simplified filter gain. Therefore, the filter also becomes 
equivalent to the BJD filter in the limit. 

Lemma 4.1 
Define a new projector Hi where 

Hi'.X-^X,    Ker Hi = ^i,   Ht = I - S-i(^f^d~^^J 

(OT i=\'-q. In the limit, H has the following properties: 

(i^i)    ^=(i^i)    K' (24a) 

HiWi = 0 (24b) 
Proof 
SeeAppendkAJ. ^ 

In the limit, by applying Lemma 4.1 to (14), 

i*=(E«)     (iHiphc-r-^ (25) 

Note that (25) does not require the solution to the two-point boundary value problem, (12) 
and (15), but just the solution to the Riccati equation (13) which can be obtained independently 
of L. By using the asymptotic expansion of P, in Reference [12], it can be shown that HiPi 
remains finite in the limit even though Pi goes to infinity. Therefore, the luniting filter gain (25) 
remains finite. Lemma 4.2 shows that (25) minimizes the cost criterion. Therefore, (25) is 
equivalent to (14) in the limit. Lemma 4.2 also shows that (9) is the optimal projector in the 
limit. 

Lemma 4.2 
In the limit, the cost criterion associated with (25) is zero. 

Proof 
See Appendix A.2. ^ 
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Remark 2 
For the single-fault filter, the filter gain (20) goes to infinity in the limit and there exists a 
reduced-order filter [12], For the multiple-fault filter, however, the limiting filter gain (25) 
remains finite. 

Theorem 4.3 shows that #1 • • • #^ are (/4 - i,C)-invariant where L is in (25). Therefore, the 
filter becomes equivalent to the RDD filter in the limit. Corollary 4.4 shows that ^i • • • ^ are 
(A - iC)-invariant where L is in (25). Therefore, the filter also becomes equivalent to the BJD 
filter in the limit. 

Theorem 4.3 
In the limit, ^i • • • #^ are (J4 — £C)-invariant where L is in (25). 

Proof 
See Appendix A.3, □ 

Corollary 4.4 
In the limit, #1 • • • ^ are (i4 — I,C)-invariant where L is in (25). 

Proof 
See Appendix A.4. □ 

Remark 3 
For time-varying systems, the minimal (C,.f4)-unobservability subspace cannot be determined by 
(21) because the concept of invariant zero is for time-invariant systems only^ However, by letting 
^1 = Kerfl,- which is given in Appendix A,3, it can be shown that Kerll,- is included in the 
unobservable subspace of (HiC,A — LC) where L is in (25) and Hj is given in (9) [11,12]. 
Furthermore, Ker ft,- is equivalent to the unobservable subspace of (HiC, A — LC) when there is 
no complementary subspace. Then, all the lemmas, theorem and corollary in this section can be 
shown similarly for time-varying systems. Therefore, the filter extends the RDD and BJD filter 
to the time-varying case. 

Remark 4 
In the limit, by using Lemma 4.2 and that tr(.^CPiC^J^) is finite [12], the robust multiple-fault 
detection filter problem satisfies 

for i = 1 • • • ^. This implies that the transmissions from the associated nuisance faults to their 
associated projected residuals are ^ro. 

4.3. Condition on fault detection and identification 

In this section, three conditions to ensure that the faults can be detected and identified are 
assumed. First, C^i • • • C^ are independent. If they are not independent, different faults will 
produce the same non-zero projected residuals and therefore the faults cannot be identified. This 
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is equivalent to the output separability condition in Reference [3]. Note that CS'x---C^^ are 
independent if and only if CW\ • • • CWg are independent. 

The other two conditions are assumed for tune-invariant systems only. The first condition is 
that the invariant zeros of (C,^,[Fi • • -F,]) are either the invariant zeros of (C,^,F), i = 1 • • • g, 
or in the left-half plane. This is from the mutually detectable condition for the RDD filter 
because the robust multiple-fault detection filter becomes equivalent to the RDD filter in the 
limit. Fi • • • F, are mutually detectable if {C,A, [Fi • • • F,]) does not have more invariant zeros than 
(C,A,Fi), I = 1 •• -g [3]. If Fi.• -F, are not mutually detectable, the extra invariant zeros will 
become part of the eigenvalues of the detection filter. If the extra invariant zeros are in the right- 
half plane, no stable detection filter can be found to isolate these q faults. A numerical example 
is given in Section 6.2.3. The second condition is that (C,A,F,) cannot have invariant ^ros at the 
origin if Hi needs to be detected [12], This ensures a non-zero projected residual in steady state 
when its associated target fault occure. 

5, MINIMIZATION WITH RESPECT TOHi-H, 

In this section, the robust multiple-fault detection filter problem is solved with Hi-H^ derived 
from solving the minimization problem instead of defined a priori by (9). From (11), by using 
Hi = PiPf, the minimization problem becomes 

1       /'■ 
mm     /    tr 

Lfivfl, t\ - % Jfa 
Y^pjcim+p,)c^p, 
i=l 

dt 

subject to (12) and pjp. = I„^ where TO, is the rank of (9). By using matrix Lagrange multipliers 
Ki and S,- to form the variational Hamiltonian, the first-order necessary conditions imply 
that the optimal solution for L and the dynamics of Ki are still (14) and (15), respectively. 
Further, from the first-order necessary condition C(»f + i>)C''p, = p,S,-, the optimal solution 
for Hf is 

H* = \Pt,i   Pt,i    •••    Pi^MPt,x   Pt:i    •••    p,^^ (26) 

where p,^i---Pi^ are the eigenvectors of C(Wf^P-^C'^ ^sociated with the smallest m,- 
eigenvalues. To obtain the optimal solutions for L and H\-H„ (12), (14), (15) and (26) 
have to be solved simultaneously. For the infinite-time case, (14), (17), (19) and (26) have to be 
solved sunultaneously. In Section 4,2, it is shown that (9) minimires the cost criterion in the 
limit. Therefore, (26) becomes equivalent to (9) in the limit. Note that, for time-invariant 
systems, (9) is the projector used by the RDD filter [3], 

6. EXAMPLE 

In this section, two numerical examples are used to demonstrate the robust multiple-fault 
detection filter. In Section 6.1, the filters are derived in the forms of unknown input observer, 
BJD filter and RDD filter, respectively. In Section 6,2, the filters are derived to show that the 
filter has behaviours similar to the RDD and BJD filters. 
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6.1. Example 1 

In this section, a linear time-invariant system for the F16XL aircraft [6] is used to demonstrate 
the performance of the robust multiple-fault detection filter. The system has four states 
(longitudinal velocity x„, normal velocity x„, pitch rate Xg and pitch angle XB), one control input 
(elevon deflection angle Uf), four measurements (longitudinal velocity yu, normal velocity y„, 
pitch rate yg and pitch angle yg) and one disturbance input (wind gust Hwg). The system matrices 
are 

-0.0674 0.0430 -0.8886   -0.5587" 

0.0205 -1,4666 16.5800    -0.0299 

0,1377 -1.6788 -0.6819 0 

0 0 10 

0.1672" 

1.5179 

9.7842 

0 

°wg — 

0,0430 

-1.4666 

-1.6788 

0 

C = I 

Three faults in pitch angle sensor yg, elevon deflector us and wind gust Uwg are considered. In 
this example, the wind gust is considered as a fault instead of a process noise. The fault 
directions are [4] 

0 -0.5587" ■-0.1672" 0.0430 

0 

0 

-0.0299 

0 
, Fs = 

-1.5179 

-9,7842 
j  '*wg — 

-1.4666 

-1,6788 

1 0 0 0 

In Section 6.1.1, the filters are derived in the form of unknown input observer where J = 1, In 
Section 6,1,2, the filter is derived in the form of the BJD filter where s = 3.In Section 6,1,3, the 
filter is derived in the form of the RDD filter where s = 2. In Section 6.1.4, the filter is derived to 
show that the sensitivity of the projected residuals to their associated target faults can be 
enhanced, 

6.1.1. Unknown input observer 
In this section, the filters are derived in the form of unknown input observer where s=\. Since 
each filter can detect only one fault, three filters are needed. Let Fi = Fg, F2 = Fg and F3 = Fwg, 
The weightings are chosen as y, = ^2 = ?3 = 10~*, gi = 0,1/, O2 = fia = 1 and V = I. The 
steady-state solutions of (13) are obtained for i = 1 • • • 3, respectively. Then, three single-fault 
filters (3) are obtained by (20), Figure 1 shows the frequency response from each fault to the 
projected residual ^r (4) of each filter. Note that each filter has only one projected residual Hir 
for detecting the fault Fj. The projectors Hi -Hi are defined by (9). The dashed line represents 
the pitch angle sensor fault. The dashdot line represents the elevon deflector fault. The solid line 
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1st filter 2nd filter 3rd filter 

10 W 
Frequency (rad/s) 

10" 10' 
Frequency (rad/s) 

10" 10' 
Frequency (rad/s) 

Figure 1, Frequency response of the three single-fault filters when * = 1. 

represents the wind gust fault. This example shows that the projected residual of each filter is 
only sensitive to its associated target fault, but not to its associated nuisance fault, 

6.1.2, Beard-Jones detection filter 
In this section, the filter is derived in the form of the BJD filter where s = 3, Since the filter can 
detect all three faults, only one filter is needed. The filter gain, satisfying (17), (18) and (19), is 
obtained by using the gradient method to solve (16) numerically with Hi-Hj defined a priori 
by (9). Figure 2 shows the frequency response from each fault to the three projected residuals 
Hir-- Hit (4) of the filter (3). This example shows that one multiple-fault filter works as well as 
three single-fault filters. 

6.1.3. Restricted diagonal detection filter 
Since the wind gust is a disturbance, it does not need to be detected, but only needs to be 
blocked. Therefore, in this section, the filter is derived in the form of the RDD filter where s = 2. 
The filter gain, satisfying (17), (18) and (19), is obtained by using the gradient method to solve 

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696 



688 R. H. CHEN AND J. L. SPEYER 

1st projected residual 2nd projected residua 3rd projected residual 

10 10 10" W 10" 10- 
Frequency (rad/s) Frequency (rad/s) Frequency (rad/s) 

Figure 2. Frequency response of the multiple-fault filter when s = 2. 

(16) numerically with Hi and H2 defined a priori by (9). In Figure 3, the left and middle figures 
show the frequency response from each fault to the two projected residuals, Hir and Hzr (4), of 
the filter (3), Note that the filter has only two projected residuals because only two faults, Fi and 
F2, are detected. These two figures show that the pitch angle sensor fault and elevon deflector 
fault can still be detected and identified even though s = 2, To compare with the filter derived in 
the previous example where * = 3, the right figure in Figure 3 shows the frequency response 
from each fault to the projected residual H^r used for detecting the wind gust fault in previous 
example. This figure shows that the wind gust fault can no longer be identified from the other 
two faults. This example shows that the multiple-fault filter still works well after relaxing the 
constraint on detecting the wind gust fault. 

6.1.4. Enhancement of associated target fault sensitivity 
In this section, another filter in the form of the RDD filter where s = 2 is derived to show that 
the sensitivity of the projected residuals to their associated target faults can be enhanced. The 
weightings are the same except gi = 0.64/ and Q2 = 4.73. In Figure 4, the performance of this 
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Figure 3, Frequency response of the multiple-fault filter when s = 2. 

filter is compared to the filter derived in the previous example. The left figure shows the 
frequency response from the pitch angle sensor fault to its associated projected residuals when 
gi = 0,1/ and 0.64/, respectively. The right figure shows the frequency response from the elevon 
deflector fault to its associated projected residuals when Q2 = 1 and 4,73, respectively. This 
example shows that the sensitivity of the projected residuals to their associated target faults can 
be enhanced by increasing the weightings of the associated target faults, 

6.2. Example 2 

In this section, three numerical examples are used to show that the robust multiple- 
fault detection filter has behaviour similar to the RDD and BJD filters. In Section 6,2.1, the 
filter is derived when the fault has an invariant zero in the right-half plane. In Section 6.2.2, 
the filter is derived when the fault has an invariant zero in the left-half plane. In Section 6,2.3, 
the filter is derived when the faults are not mutually detectable. 
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Figure 4. Frequency response of the multiple-fault filter when s = 2. 

m' 

0 3   4" 

1 2   3 .   c = 0    1    0' 

0   0    1 
,    F, = 

"   1   ■ 

-0.5 ,     F2 = 

-3 

1 

0   2   5 0.5 0 

6.2.1. Right-half-plane invariant zero. 
Consider the time-invariant system from Reference [4], 

A = 

There is no process noise. (C,A,F2) has an invariant rero at 3 and the invariant zero direction is 
V = [1 0 of. By using (21), ^, = ImFi and ^2 = MF2 v]. Since ^, ® ^"2 = ^, there is no 
complementary subspace. 

A multiple-fault filter is derived similarly as before to detect and identify these two faults. The 
weightings are chosen as y, = yj = 10"*, Qi=Q2 = 0.25 and V = 1. The eigenvectors of the 
filter are very close to #1 and ^ similar to the BJD filter. Since the invariant zero direction is 
approximately included in the invariant subspace of F2 generated by the filter, none of the 
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eigenvalues of the filter is close to the invariant zero at 3 [3], The eigenvalues of the filter are 
-0.5865, -5.3789 and -7.1102. 

6.2.2. Left-half-plane invariant zero 
Consider the same time-invariant system from Section 6.2.1 except Fa = [3 1 0]^. {C,A,F2) 
has an invariant zsm at -3 and the invariant zero direction is v = [1 0 0]'"". By using 
(21),   ^i=ImFi   and  J"2 = Im[F2v].   Since  ^,©^2 = ^,   there   is  no  complementary 
subspace. 

A multiple-fault filter is derived with the same weightings as in Section 6.2.1. The eigenvectors 
of the filter are very close to #i and ^2 similar to the BJD filter. Since the invariant zero 
direction is approximately included in the invariant subspace of Fj generated by the filter, none 
of the eigenvalues of the filter is close to the invariant zero at -3 [3]. The eigenvalues of the filter 
are -0.5865, -5.3789 and -7.1102. 

Remark 5 
For the single-fault filter [12], the invariant zero directions associated with the left-half-plane 
invariant zeros are not included in the invariant'subspace and part of the eigenvalues of the filter 
are very close to the invariant reros. Although the invariant zero directions associated with the 
right-half-plane invariant zeros are included in the invariant subspace, part of the eigenvalues of 
the filter are very close to the mirror unages of the invariant zeros. To avoid this situation, the 
fault directions have to be modified. However, as demonstrated by the numerical examples in 
Sections 6.2.1 and 6.2,2, the multiple-fault filter automatically includes the invariant zero 
directions in the invariant subspaces and none of the eigenvalues of the filter is close to the 
invariant zeros or their mirror images. 

6.2.3. Non-mutually detectable faults 
Consider the same tune-uivariant system from Section 6.2.1 except F2 = [5 1 1]''". Fi and Fa are 
not mutually detectable because (C,A,\Fi F2]) has an invariant zero at -1.5 while iC,A,F{) and 
{C,A,Fx) do not have any invariant zero. By using (21), ^, = ImFi and ^z = ImFa. Since 
^\® ^i<^ S£, there is a complementary subspace. 

A multiple-fault filter is derived with the same weightings 2& in Section 6.2.1, Two of the 
eigenvector of the filter are very close to S'\ and ^ sunilar to the BJD filter. Since F\ and Fa are 
not mutually detectable, one of the eigenvalues of the filter is very close to the extra invariant 
zero at -1,5 [3]. The eigenvalues of the filter are -1.5008, -5.7648 and -6.8185. 

Remark 6 
A multiple-fault filter is also derived for two non-mutually detectable faults where the 
extra invariant zero is in the right-half plane. Although a stable filter can be derived numerically 
by minimizing the cost criterion, the minimal cost is large and the filter cannot isolate the 
faults. This is consistent with the BJD filter in that the extra mvariant zero will become 
one of the eigenvalues of the filter if the filter generates the invariant subspaces to isolate 
the faults [3], Therefore, it is impossible to obtain a stable multiple-fault filter that can 
isolate the faults. However, two single-fault filters can be used to monitor these two 
faults. 
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7. CONCLUSION 

DifTerent from other design algorithms for the RDD or BJD filter which explicitly force the 
geometric structure by using eigenstructure assignment or geometric theory, the robust multiple- 
fault detection filter is derived from solving a stochastic minimization problem and only in the 
limit, is the geometric structure of the RDD filter recovered and the faults are completely 
isolated. When it is not in the limit, the filter only isolates the faults within approximate 
unobservable subspaces. This new feature allows the filter to be potentially more robust because 
of the additional design freedom which allows different degrees of fault isolation. Furthermore, 
a mechanism that enhances the sensitivity of the projected residuals to their associated target 
faults is provided. Finally, the filter can be applied to time-varying systems. Although the 
process of deriving the filter gain requires the solution to a two-point boundary value problem, 
the filter gain computation can be done off-line so that the filter implementation is as 
straightforward as the RDD filter. However, further research is needed in developing a 
numerical algorithm to solve the optimization problem more efficiently. 

APPENDDC A 

A.I. Proof of Lemma 4.1 

To show (24a), for i = 1, by using Lemma A.1 in Appendix A.5 

HI    0      0 

0 0 

-I 

a    Q   H, 

9 

Hi    0' ■j  0" 

0     0 0   0 
. 

r-M£^,j  ^,r = (£r''^,rj  T^KIT 

Ki 0 0 ] -1 

Ki 0 /   0 
0 0 

0 0 
— 

0   0 
0 0 ^J 

Therefore, (2|=i Hjf^Hi = (J2%i Kj)~^Ki. It can be shown similarly for the cases where 
i = 2--q. This completes the proof for (24a). 

To show (24b), by substituting (24a) into (14) 
/ .       \ -1 r , 

E^' 
j=i 

Y^HiiPi+m) 
1=1 

Trr-i C'V (Al) 

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696 



MULTIPLE-FAULT DETECTION FILTER 693 

By multiplying (12) by H, from the left and right, substituting (Al) and using Lemma A.2 in 
Appendix A.5 

H,[- Wi + (^ - PiC''V-'C)Wi + Wi(A - PiC^V-^Q'' - mC'^V-^CWm = 0 

Note that, from (20), A - PiC'V-^ C is the closed-loop A matrix of the filter when only the fault 
Fi is detected. Then 

Wt = (A- PiC^V-^C)Wi + Wi{A - PiC^r-^Cf - mc^v-^cWi + titf 

where Im ti = ^i because Kerfli = #}. Since #;• is (4-f^C^F-'Q-invariant [12], the 
controllable subspace of (A - PC^V-^C, t-) is #■, and Im F^ = #}. Since Keri?, = #;■, HiW, = 
0. This completes the proof for (24b). 

A.2. Proof of Lemma 4.2 

By multiplying (12) by H, from the left and right, substituting (25) and using Lemma A.2 in 
Appendix A.5 

Hi[- Wi + (A- PiC^V-^C)Wi + Wi(A -PiC^V-^CfWi = 0 

Then 

Wi = iA- PiC^r-^C)m + WiiA - pc^v-^cf + titf 
where Im2J = ^- because Kerfl; = J;.. Since #} is (4-i^C^F-» C)-invariant [12], the 
controllable subspace of (^-flC^F->C,^ is #;•. Then, the image of the controllabihty 
grammian W, is #J, Since Ker^ = C#} from (9), HiCW,C'^Hi = 0, Therefore 

J* = -  /' trf V^C^C^^ I dr = I 

(A2) 

A.3. Proof of Theorem 4.3 

Since Pt goes to infinity in the limit, n,= ir» has a null space [12] and 

When the associated nuisance fault occurs, the dynamic equation of the error without process 
and sensor noises can be written as 

n,e = n,(^ - LQe + HiFifLf 

By adding ri,e to both sides and substituting (A2) 

|(n,e)=-   nd.C + A'Tlt + H,{^mf,-FQ,Ff^B^Q^Bl\ 

xn,- C^V-^C e + IiiPifXi 

Let n,- = lim^-^o n. Since Ker ft, = #J [12] 
9 

1 
-I 

n. E^*    ^/ 
n., i=j 

0,     j#j 

(A3) 

(A4) 
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which can be shown similarly to Lemma A.2 in Appendix A.5, In the limit, by substituting (25) 
and (A4) into (A3) 

|(n,e) ^^ + n, (i-F,4#f - FiQiFf + B„Q.Bl n,e + n,F,/i, (A5) 

If the error initially lies in Ker II,, (A5) implies that the error will never leave Kerfl,- because 
n,F, = 0 [12]. Therefore, Ker % is {A - IQ-invariant where L is in (25). Since Ker fl, = #} [12], 
#i is (A — iQ-invariant where L is in (25). 

A.4. Proof of Corollary 4.4 

When s = q, ^-= #"1 n ••• n#;_i n#}+i n---n#^. From Theorem 4.3, S'l---^^ are 
{A — £C)-invariant where L is in (25). Therefore, ff'i---^gB.m{A- I,C)-invariant where £ is in (25), 

A.5. Lemmas 

Lemma A.I 
There exists a state transformation F 

m ^,] = r 

Zi 0 0" 

0 0 

0 0 z,. 

rKir ■■ 
0   0 

where Z,-, i = 1 • • • g, are any invertible matrices with dimension equivalent to dim ^t such that 
Kf-Kg are in the form of 

"0     0     0 

,   F^r2F=  0 ^2  0     •■•   r^^„r = 

.0     0    0 

in the limit where Ky-Kg aie invertible and H\-Hg are in the form of 

^1    0 

0     0 0   K, 9i 

rHiF ■■ 
Hi   0 

0     0 
,    r^HzT. 

0 0 0" 

0 H2 0 

0 0 0, 

rHaF ■■ 
0     0 

0 iia 

where Hi-- Hg are invertible. 

Proof 
Since Ker ^ = C#; from (9) and #} is (A - £Q-invariant in the lunit by the assumption, the 
unobservable subspace of (^C,^ - £C) is #;. Then, from the Lyapunov equation (15), the null 
space of the observability grammian Kt is #} in the limit. For i = 1 

Kerr, =.ri = r r ^ 1 r 01 
^^iF 

LzJ LZiJ 
0 ^ r^^iF 

0 

Zi 
= 0 
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where Z\ — diag(Z2 • • -2,). Since Zi is invertible and T'^K\T is symmetric 

r^^iF = 
Kx   0 

0    0 

It can be shown similarly for Kj-'-K^ and Hi--Hg. 

Lemma A.l 

a 

9 

I 
-1 

^4E^*   ^i 
Hi,    i=J 

0.     i#i 

Proof 
For j = j = 1, by using Lemma A.l, 

r^Hi(J2m) ff,r=(r^F,r)(£r^if,r)  (r^^.r) 
-I 

Kk=t 

Hi 0 

0 0 

Hx 0 

0 0 

^1 0 0 1 
-1 

r^i ol r/ 0] \Hx 0] 
0 I ^ 0 

0 0 
,— 

0   0 0 0 
0 0 HA 

rHxT 

Therefore, ffi(£l=i ^*) '-^i = ^i- It can be shown similarly for other cases where i = J. For 
i = 1 and j = 2 

r^if, £ift    i?2r=(r^^ir)(£r^iftr)  (r^Aail 
*3 

fi^i    0 

0     0 

/   0 

0   0 

Hx 0 0 " 
-I 

0 •. 0 

0 0 H,. 

0 0 0' 

0 H2 0 

0 0 0. 

0 0 0' 

0 H2 0 

0 0 0. 

0 

Therefore, H^i(|3|=i -Hit) '-ffz = 0. It can be shown similarly for other cases where i#_/.       n 
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Alwtract 

A fault detection and identification algorithm, called optimal stochastic fault detection filter, is determined. The objective of the filter 
is to detect a single fault, called the target fault, and block other faults, called the nuisance faults, in the presence of the process and 
sensor noises. The filter is derived by maximizing the transmission from the target fault to the projected output error while minimizing the 
transmission torn the nuisance faults. Therefore, the residual is afiected primarily by the target fault and minimally by the nuisance faults. 
The transmission from the process and sensor noises is also minimized so that the filter is robust with respect to these disturbances. It is 
shown that the filter recovers the geometric structure of the unknown input observer in the limit where the weighting on the nuisance fault 
transmission goes to infinity. Further, the asymptotic behavior of the filter near the limit is determined by using a perturbation method. 
Filter designs can be obtained for both time-invariant and time-varying systems. 
© 2002 Elsevier Science Ltd. All rights reserved. 

Keywords: Fault detection and identification;  Analytical redundancy;  Unknown input observer.  Robust fault detection filter;  Time-varying system; 
Perturbation theory 

1. iitroduction 

Any system under automatic control demands a high 
degree of system reliability. This requires a health moni- 
toring system capable of detecting any plant, actoator and 
sensor faults as they occur and idcntilying the faulty com- 
ponents. One approach, analytical redundancy which re- 
duces the need for hardware redundancy, uses the modeled 
dynamic relationship between system inputs and measured 
system outputs to form a residual process which can be used 
for detecting and identifying faults. A popular approach 
to analytical redundancy is the unknown input observer 
(Chen & Speyer, 2000; Chung & Speyer, 1998; Frank, 
1990; Massoumnia, Verghesc, & Willsky, 1989; Patton & 
Chen, 1992) which divides the faults into two groups: a 
single target fault and possibly several nuisance faults. The 
nuisance faults are placed in an invariant subspace which 

* This paper was not presented at any IFAC meeting. TTiis paper was 
recommended for publication in revised fomi by Associate Editor Rene 
Boel under the direction of Editor Tamer Basar. 

•Corresponding author. Tel.: +1-310-206-4451; fax: +1-310-206- 
2302. 

E-mail addresses: chrobert@talus.seas.ucla.edu (R.H. Chen), 
mingori@seas,ucla.edu (D. L. Mingori), speyer@seas.ucla.edu 
(J.L. Speyer). 

is unobservable to the residual. Therefore, the residual is 
only sensitive to the target fault, but not to the nuisance 
faults. 

In fliis paper, a design algorithm, called optimal stochas- 
tic fault detection filter, is determined for the unknown input 
observer. The filter is derived by maximizing the transmis- 
sion firom the target fault while minimizing the transmission 
fi-om the nuisance faults. The transmission is defined on the 
projected output error by using a projector to be derived fi-om 
solving the optimization problem. Therefore, the residual is 
affected primarily by the target fault and minimally by the 
nuisance faults. The transmission fi^om the process and sen- 
sor noises is also minimized so that the filter is robust with 
respect to these disturbances. Since certain types of model 
uncertainties can be modeled as additive noises (Patton & 
Chen, 1992; Douglas, Chen & Speyer, 1997) the filter can 
also be made robust to these model uncertainties. 

In the limit where the weighting on the nuisance fault 
transmission goes to infinity, the filter blocks the nuisance 
faults completely. It is shown that the filter places the nui- 
sance faults into a minimal (C,j4)-unobservability subspace 
for time-invariant systems and a similar invariant subspace 
for time-varying systems. Therefore, flie filter recovers 
the geometric structure of the unknown input observer in 
Ihe limit and extends the unknown input observer to the 

0005-1098/03^-see front matter © 2002 Elsevier Science Ltd. All rights reserved. 
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time-varying case similar to Chen and Speyer (2000) and 
Chung and Speyer (1998). These limiting results are impor- 
tant in ensuring that both fault detection and identification 
can occur. For time-invariant systems, the nuisance fault 
directions are generalized to prevent the invariant zeros of 
the nuisance faults or their mirror images fi-om becoming 
part of the eigenvalues of the filter. 

The behavior of the filter near and in the limit can be 
determined by using a perturbation method. In particular, 
the perturbation method captures the asymptotic behavior of 
the Riccati equation that defines the filter gain and general- 
izes the result of Kwakemaak and Sivan (1972), Note that 
Chen and Speyer (2000) and Chung and Speyer (1998) use 
the Gob transformation in singular optimal control theory 
(Bell & Jacobson, 1975; Moylan & Moore, 1971) to deter- 
mine the filter in the limit. Although the Goh transforma- 
tion cannot determine the asymptotic behavior of the filter 
near the limit, it is shown that it produces a limiting Riccati 
equation which is the same as that determined fi-om the per- 
toirbation method. Finally, the asymptotic approximation to 
the ill-conditioned Riccati equation near the limit provides 
a robust numerical algorithm by eliminating the large coef- 
ficient in the Riccati equation. 

The problem is formulated in Section 2 and its solution 
is derived in Section 3, In Section 4, the limiting properties 
of the filter are determined. In Section 5, the limiting and 
asymptotic behaviors of the filter are determined by using 
the perturbation method. In Section 6, numerical examples 
are given. 

2. Problem formulation 

Consider a linear time-varying, uniformly observable 
system. 

x=Ax+ B„u + B„w, (la) 

(lb) 

where u is the control input, y is the measurement, w is 
the process noise and v is the sensor noise. Following the 
development in (White & Speyer, 1987; Chung & Speyer, 
1998), any plant, actuator arid sensor faults can be modeled 
as additive terms in the state equation (la). Therefore, a 
linear system with q faults can be modeled by 

x=Ax + BuU + By,w + y^ Fijii, _ (2a) 
1=1 

y = Cx + v. (2b) 

The fault magnitudes /t,- are unknown and arbitrary fiinc- 
tions of time that are zero when there is no fault. The fault 
directions F,- are maps that are apriori known. Assume the 
F,'s are monic so that ^,- ^ 0 implies F,/!,- ^ 0, Since the 
optimal stochastic fault detection filter is designed to detect 
only one fault and block other faults, let nx =/I, be the target 

fault and n2=Wl"- /ij_, /lf+, • • • M|f be the nuisance fault. 
Then, (2) can be rewritten as (Massoumnia et al., 1989) 

x = Ax + BuU + B„w + FiHi + F2H2, 

y = Cx + v, 

(3a) 

(3b) 

where F, = F, and F2 = [F, ■ • • F,_i F,+i • • ■ F,]. 
The objective of the optimal stochastic fault detection 

filter problem is to find a filter gain L for the linear observer, 

x = Ax^BuU + L{y-Cx) (4) 

and a projector H for the residual, 

r^H{y-Cx) (5) 

such that the residual is affected primarily by the target fault 
Hi and minimally by the nuisance fault ^2. process noise 
w, sensor noise v and initial condition error x{tf^) — i(%). 
It is assumed that Hi, ^2, w and v are zero mean, white 
Gaussian noises with power spectral densities gi, Q2, Qy, 
and F, respectively, and the initial state x(to) is a random 
vector with variance P^. It is also assumed Aat ^i, H2, w 
and V are imcorrelated with each other and with x(to). 

By using (3) and (4), the dynamic equation of the error, 
e = x—x, is 

e = (A- LC)e + FiHi + F2H2 + B^w - Lv. (6) 

Then, the error can he written as 

eit) = ^(t,to)eito) 

I  9{t, %)iFiHi + F2H2 + B„w - Lv) dt (7) + 

subject to 
d 
- #(4 to) = (A- LCmt, to), (8) 

where #(^0,^0) = /■ The residual (5) can be written as r = 
H(Ce + v). 

An optimal stochastic fault detection filter problem for- 
mulated with a cost criterion based on the residual is un- 
usable firom the statistical viewpoint since the variance of 
the residual generates a 5-function due to the sensor noise. 
Therefore, the cost criterion will he based on the projected 
output error HCe. In order to determine the cost criterion, 
define 

hi(t)^HC /#(l,T)F,/t,dT, 

h2(t)^HC   f  #(f,T)F2M2dT, 

(9a) 

(9b) 

^3(0 A HC ^t,to)eito) 

f + I  ^t,x)(B^w-Lv)Ax (9c) 
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From (7), E[Ai(f)Ai(0^] represents the transmission from 
Hi to HCe, E[A2(^)A2(0T represents the transmission from 
Hz to HCe and B\h%{t)h-i(t^\ represents the transmission 
from w, V and e(%) to HCe where E[ • ] is the expectation 
operator. Note that e(J.Q) is a zero mean random vector with 
variance Po if jf(%) = E[x(fo)]. 

The optimal stochastic fault detection filter problem is to 
find the filter gain L and the projector H which minimize 
the cost criterion, 

J = tr |i E[h2(t)h2{tfl + ^_hit)h{tfl 

(10) 

where t is the current time and | is a positive scalar. Making 
y small places a large weighting on reducing the nuisance 
fault transmission. The trace operator forms a scalar cost 
criterion of the matrix output error variance. Note that the 
power spectral densities Qi and Qj are considered as design 
parameters. Since no assumption is made on the fault mag- 
nitudes, their white noise representation is a convenience. 
When Qi increases, the transmission from the target fault 
incre^es. When Q% increases, the transmission from the nui- 
sance fault decreases. However, the power spectral densities 
Qw and V, and the variance Po can have physical values. 
When gw. V and Po increase, the fransmission from the pro- 
cess noise, sensor noise and initial condition error decreases, 
respectively. 

Since the effect of the process and sensor noises on 
the residual is explicitly minimized, the filter is robust 
with respect to these disturbances. Certain types of model 
imcertainties can also he modeled m additive noises 
(Patton & Chen, 1992; Douglas et al„ 1997). Therefore, 

■< flie filter can be made robust to fliese model uncertainties. 
In Section 4, it is shown that the filter recovera the geomet- 
ric structure of the unknown input observer in the limit as 
y —► 0 and the nuisance fault is completely blocked. When 
it is not at the limit, the filter is an approximate unknown 
input observer and the nuisance feult is partially blocked. 
Since the approximate unknown input observer (Chung & 
Speyer, 1998; Chen & Speyer, 2000) has the additional de- 
sign freedom to determine how much of the nuisance fault 
is to be blocked, it is potentially more robust than the clas- 
sical unknown input observer (Frank, 1990; Massoumnia 
et al., 1989; Patton & Chen, 1992). 

3. Solution 

In this section, the minimization problem given by (10) 
is solved. By using (9), the cost criterion rewritten as 

J = txlHC 
.Jto 

t){LrL' + -F2Q2Fl 

-FiQiFj + B^Q^Bl) 0it,xf dt 

-!-#(<, fo)Po#(f,%)'^ C^H 

is to be minimized with respect to L and H subject to (8) 
and that i? is a projector. By adding the zero term 

tr |i? C 

' d 

m,t)P{m(t,tf - mto)P(tomt,tof 

r d 
t)P(T)^{t,x)]dt -} 

to / and using (8), the minimization problem can be rewrit- 
ten as 

mmtr HC f m^ t)(L - PC r-')r(L - pc^v-^) TT/-1ST 

#(r, tf dxC^H + HCP(t)C'^H 

subject to (8) and that if is a projector where 

P=AP + PA^ - PC'^V-^CP + -F2Q2FJ 

■FiQiFj+B^Q^Bl 

(11) 

(12) 

and P(%) = Po- By inspection, the optimal filter gain is 

L*=PC'^V- (13) 

Since if is a projector, it can be written as if=pp^ where 
dimp = rankff and p^p = I. By applying (11) to (13) and 
substituting if = pp^, the minimization problem reduces to 

mintr[p'^CP(OC"'p] 
p 

subject to p^p=I. By using a matrix Lagrange multiplier 1 
to adjoin the constraint to the cost criterion, the first-order 
necessary condition is obtained as Athans (1968) 

CPit)C^p = pL 

Let k\ > I2 > • • ■ > "^m be the eigenvalues of CP(I)C''^ and 
pi,P2,---,Pm be the associated eigenvectors. The solution 
for the optimal p depends on the rank of H. If the rank 
is chosen as one, the optimal p is p„ and the optimal pro- 
jector is 

H* = PmPl (14) 

The minimal cost associated with (14) is X„. Note that the 
null space of (14) is Im[pi pa • • • Pm-i] because (14) can 
he written as #* = i - [pi pa • • • P»-i] [pi Pi--- Pm-if. 

In Sections 4 and 5, it is shown that CP(t)C^ has p2 infi- 
nite eigenvalues in the limit as | ^- 0 and p2 large eigenval- 
ues near the limit when j is small where pa = dim F2. Since 
the remaining m — p2 eigenvalues are very small compared 
to the p2 large eigenvalues when j is small, the rank of if 
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can be chosen mm — pt and the optimal projector is 

H* = lPm      Pm-l 

IPm      Pm-l 

Pp2+ll 

Pp2+lf- (15) 

The minimal cost associated with (15) is J^t^m+i k- The 
mill space of (15) is Im[p, p2 ■■■ PpJ. Note that both (14) 
and (15) are optimal projectors depending on the rank cho- 
sen. In Sections 4 and 5, it is shown that lm[pt pz •-• PpJ 
contains the nuisance fault completely in the limit and par- 
tially near the limit. Thus, the null space of if * only needs 
to include Im[pi p2 ■■• PpJ in order to block the nuisance 
fault. Furthermore, (15) allows at least as much of the target 
fauk to pass through as (14) because lm[pi P2 ••• PpJ C 
lm[pi P2 ••• Pm~i]- Therefore, (15) is a better choice than 
(14). In Section 4, it is shown that (15) becomes equivalent 
to the projector used by the unknown input observer in the 
limit. 

In Section 4.1, the geometric structure of the unknown in- 
put observer is given (Massoumnia et al, 1989; Chung 
& Speyer, 1998). In Section 4.2, the limiting properties of 
the filter are determined. In Section 4.3, the nuisance fauh 
directions are generalized for time-invariant systems to pre- 
vent the invariant zeros of the nuisance fault or their mirror 
images from becoming part of the eigenvalues of the filter. 
In Section 4.4, the conditions to ensure that the target fauh 
can be detected are discussed. 

4.1. Geometric structure of unknown input observer 

The unknown input observer places the nuisance fauh 
into the invariant subspace S'2 which is unobservable to the 
residual (Massoumnia et al, 1989 ). ^2="^2 © i^i is called 
the minimal (C,^)-unobservability subspace or the detec- 
tion space of F2 (Massoumnia, 1986). iFa is the minimal 
(C,^)-invariant subspace of F2 given by 

iTa = [/, AU-. A''A    ft Af2... A'^f2 ■■■ fp, Afp, ■ • • A^nf^i (16) 

Remark 1. To implement the optimal stochastic fault de- 
tection filter, the filter gain (13) and the projector (15) are 
constructed continuously with respect to time because in the 
cost criterion, t is the current time. 

Remark 2. When Qi = 0, the Riccati matrix P is posi- 
tive definite. When Q\ increases, P may become indefinite 
(Chen, 2000). If Qi continues to increase, P may have a 
finite escape time and goes to —00. This can be shown by 
formulating a linear quadratic regulator problem as the dual 

where /,■ is the jth column of Ft, St is the small- 
est non-negative integer such that CA^'ft ^ 0 and 
P2 = dimFa. iTt is the subspace spanned by the in- 
variant zero directions of (C,^,F2). Note that #"2 is the 
unobservable subspace of (HC,A - LC) where L is the 
unknown input observer gain and F is a projector with 
ker^ = Im[C4«'/, C4*^/2 ■ ■ • C^*«/^] (Massoumnia 
et al., 1989). Therefore, the nuisance fault is unobservable 
to the residual fliat uses H as the projector. 

For time-varying systems, the minimal (C,^)-invariant 
subspace of F2 is (Chung & Speyer, 1998) 

1^2 = [6i,o 61,1 ••• 6i,a,    62,062,1 ••• b. Xh. 'K.O Op2.l 

problem of the optimal stochastic feult detection filter prob- 
lem and using the resuh in Speyer (1986). This can be in- 
terpreted as an attempt to make the residual sensitive to the 
target fault. If Qi is too large, the target fault may destabi- 
lize the filter. Therefore, Qi has to be chosen small enough 
to avoid the finite escape time. 

4. Limiting case 

In this section, flie limiting properties of the optimal 
stochastic fault detection filter are determined when | —* 0. 
It is shown that the filter places the nuisance fault into an in- 
variant subspace. For time-invariant systems, this invariant 
subspace is the minimal (C,^)-unobservability subspace of 
F2. Therefore, the filter becomes equivalent to the unknown 
input observer in the limit. For time-varying systems, there 
exists a similar invariant subspace. Therefore, the filter ex- 
tends the unknown input observer to the time-varying case. 

■'Pa.a^J- (17) 

The vectors 6,j, j=0,1 • • • 5,-, are obtained fi-om the iteration 
defined by the Goh transformation, i.e., bij—Abij-i -hj-x 
with bifi = // where /, is the ith column of Fj (Bell & 
Jacobson, 1975; Moylan & Moore, 1971). Bi is the smallest 
non-negative integer such that Cfc,;^, ^ 0. For time-varying 
systems, the minimal (C,^)-unobservability subspace can- 
not be determined because the concept of invariant zero is 
for time-invariant systems only. The time-varying extension 
of ii is ker^ = Im[C6,.a, Cb2,s, ■ • • Cbp^^A (Chung & 
Speyer, 1998). 

Remark 3. Eqs. (16) and (17) produce the correct invariant 
subspaces only when rank CW2 = pi. If rank CW2 < P2,^ 
new basis for F2 can be obtained such that rank C#"2 = Pi 
(Chen, 2000; Chen & Speyer, 2002). 

4.2. Limiting property 

In this section, it is assumed that the Riccati matrix P 
is positive definite. From Remark 2, there always exists 
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positive definite P for some Qi. Then, P can be written as 
n 

p=Y,^r'p>pJ, 
1=1 

where Ij"' is the ith eigenvalue of P and p,- is the associated 
eigenvector. In the limit ^ y -* 0, P goes to infinity because 
of the term (IMFzQiFj in (12) which indicates that some 
Aj's go to zero. Define 

1=1 

Then, P goes to infinity in the limit along the null space of 
n. By using 

and (12), 

-n=nA+ A^n + n (-F2Q2FJ - FIQIFJ 

+ B„e«Bi   JI-C'F-'C, (18) 

where JI(fo) =P^'. Define 

n^iimn. 
y—0 

In the limit, in order for (18) to have a solution, 

HFa = 0. (19) 

This indicates that fl has a null space which includes F2. 
It turns out that kerH is flie key to blocking the nuisance 
fault. Theorem 4 shows that ker H is a (C,y4)-invariant sub- 
space. Therefore, the optimal stochastic fault detection filter 
places the nuisance fault into an invariant subspace in the 
limit. Theorem 5 shows that kerH also includes the mini- 
mal (C^)-invariant subspace of F2. 

Theorem 4. kerH is a (C,A)-invariant subspace. 

Proof. When only the nuisance fault occurs, the dynamic 
equation of the error (6) can be written as 

J7e = (HA - C'^V-*C)e + nPajUi. 

By adding fie to both sides and using (18), 

-(ne) = - 
at 

A' + "0 F2Q2FJ - FtQrFj 

+ B„QwB^ )]» e + nF2H2. (20) 

In the limit, if the error initially lies in ker JI, (20) implies 
that the error will never leave ker J7 because of (19), There- 
fore, kern is a (C,j4)-invariant subspace. 

Theorems, ker 11 includes the minimal (C,A)-imariant 
subspace 0/F2. 

Proof. Consider the time-varying case first where #"2 is 
given by (17). From (19), Ubi^ = 0 and i76,_o = -J76,,o. 
In the limit, by multiplying (18) by bj^ from the left and 
bifi fi-om the right, and using Ubifi = 0, 

AnF202F2'n6,.o=0. 

By using ildi.o = -iId,,o, (18) and (21), 

(21) 

Ji6,., = fiiAbxfi - 6,.o) = CF-'C^LO = 0. 

From fibi^i — 0, it can be shown similarly that nb\^2 = 0. 
By iterating this procedure, ii[ii,3 61,4 ••• fci^^,] = 0. It 
can be shown similarly that i7[6,;o 6i,i • ■ ■ 6i,j,] = 0 for 
i = 2,3,..,, p2- Therefore, i7#'2 = 0. For the time-invariant 
case, it can be shown similarly. 

Whether keril includes the invariant zero directions of 
{C,A,F2) for time-invariant systems is considered now. If 
ker JI does not include the invariant zero directions, the 
invariant zeros will become part of the filter eigenvalues 
(i.e., the eigenvalues of A - LC) (Massoumnia, 1986). 
By using the result in Kwakemaak (1976), if there exist 
left-half-plane invariant zeros, part of the filter eigenvalues 
will be at the invariant zeros in the limit. If there exist 
right-half-plane invariant zeros, part of the filter eigenval- 
ues will be at the mirror images of the invariant zeros in 
the limit. Therefore, ker JI includes the invariant zero di- 
rections associated with the right-half-plane invariant zeros, 
but not necessarily the invariant zero directions ^sociated 
with the left-half-plane invariant zeros. In Section 4.3, the 
nuisance fault directions are generalized such that ker JT in- 
cludes all the invariant zero directions. This generalization 
prevents the invariant zeros or their mirror images fi-om 
becoming part of the filter eigenvalues. This is important 
because the invariant zeros or their mirror images might 
be ill-conditioned even though they are in the left-half 
plane. 

For time-invariant systems, kerH D #"2 fi^om Theo- 
rem 5 and ker JI 2 ^2 fi^om the generalization of the 
nuisance fault directions. Thus, kerJT 3 ^2- By using 
the result in Chung and Speyer (1998) and Chen and 
Speyer (2000), ker JI C #"2- Therefore, ker JT is equiva- 
lent to the minimal (C,j4)-unobservability subspace of F2 
and the optimal stochastic fault detection filter becomes 
equivalent to the unknown input observer in the limit. For 
time-varying systems, kerJI D -#^2 from Theorem 5, By 
using the result in Chen and Speyer (2000), kerJI is in 
the unobservable subspace of {HC,A — LC). Therefore, 
the optimal stochastic fault detection filter places the nui- 
sance fault into a similar invariant subspace in the limit and 
extends the unknown input observer to the time-varying 
case. 
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Remark 6. By using the optimal filter gain (13) and optimal 
projector (15), the minimization problem (10) can be written 
as 

tr{Efe(Ofe(ff ]} + ytr{EP3(0^3(0^} 

t[{E[hi(t)him} 

= ?<! + ix{E[hi(t)hitn} 

In the limit as y —^ 0, 

Hm2it)h2(tf]} 
tt{B[h(t)hi(tn} 0 

This implies that the nuisance fault transmission is zero in 
the limit. 

Remark 7. Since P goes to infinity in the limit along ker 17, 
CPC^ goes to infinity along CkerJI. For time-invariant 
systems, Ckeri7 = Im[G4*'/, CA^^fi • • • CA^nf^J. For 
time-varying systems, C ker Ji=ImP>i,i, Cbt^Sj • • • Cfcp^jJ. 
Then, CPC^ has p2 infinite eigenvalues in the limit and 
their associated eigenvectors span Cker 11. Therefore, the 
optimal projector (15) becomes equivalent to JFI, which is 
used by the unknown input observer, in the limit. 

4.3. Generalization of nuisance fault direction 

The invariant zero of (C.^.Fa) is defined as z at which 

zI-A    Fa" 

loses rank. The invariant zero direction v is formed fi-om a 
partitioning of the null space as 

zI-A 

C 0 
= 0. (22) 

From Section 4.2, when /,-, a column vector of Ft, 
has a left-half-plane invariant zero z,-, kerij includes 
Im[/, Afi • • • A^'fi], but not Im v,- where v,- is the invariant 
zero direction. Also, z,- becomes one of the filter eigenval- 
ues in the limit. If the nuisance fault direction /,- is replaced 
by V,-, Zi will not become one of the filter eigenvalues. 
Furthermore, since ker IT includes Im[v,- Avi ••• ^*'+'v,] 
which is equivalent to Im[/,- Aft • • • A^'fi v,] by using 
(22), this generalization will still block the nuisance fault. 
Note that ker J7 includes the invariant zero direction now. 
If the invariant zero is in the right-half plane, this gener- 
alization prevents the mirror image of the invariant zero 
fi-om becoming one of the filter eigenvalues in the limit. 
lf(C,A,Vi) has invariant zeros, the same procedure can be 
repeated. If the invariant zero is associated with not just 
one, but several column vectors of F2, only one of these 
vectors needs to be replaced by the invariant zero direction. 

4.4. Condition on target fault detection 

In this section, two conditions to ensure that the target 
fault can be detected are assumed. First, Fj and ker H are 
independent, i.e., Fi n ker J7 = 0. Otherwise, the target fault 
will be difficult or impossible to detect because it will be 
blocked from the residual along with the nuisance fault even 
though the filter can still be derived by solving the minimiza- 
tion problem. This condition is similar to but less restrictive 
than the output separability condition in Massoumnia et al. 
(1989) and Chung and Speyer(1998), i.e., CWinCW2=9 
where Wi is the minimal (C,^)-invariant subspace of Fi 
which can be obtained similarly by using (16) or (17). 
The output separability condition is more restrictive be- 
cause there is an invariant subspace formed for the target 
fault. 

For time-invariant systems, to fiuther ensure a nonzero 
residual in steady state when the target fault occurs, 
(C,A,Fi) cannot have invariant zeros at the origin. When 
only the target fault occurs, the dynamic equation of the 
error (6) and the residual without the projector can be 
written as 

i = (A-LC)e + FiHu 

r = Ce. 

For a bias target fault, the residual is zero in steady state if 
iC,A — £C,F|) has an invariant zero at the origin (Chen, 
1984). Since the filter gain L does not change flie in- 
variant zero, (C,A - LC,Fi) has an invariant zero at the 
origin if and only if (C,^,Fi) has an invariant zero at the 
origin. 

5. Perturbation analysis 

In Section 4.2, the limiting properties of the Riccati ma- 
trices n and P were determined. In this section, expressions 
for n and P in the limit and near the limit are developed m- 
ing a perturbation method. The asymptotic expansions of JI 
and P, explicitly expressed as fimctions of y, give an under- 
standing of il and P when j is small which is the region of 
interest for the filter design. In Chen md Speyer (2000) and 
Chung and Speyer (1998), the Goh transformation in singu- 
lar optimal control theory (Bell & Jacobson, 1975; Moylan 
& Moore, 1971) is used to determine IT in the limit. How- 
ever, the Goh transformation cannot determine 11 near the 
limit. In Section 5.1, U is expanded around y=0. This shows 
explicitly the characteristics of H near and in the limit. It 
is shown that the limiting U determined fi-om the perturba- 
tion method is the same as that determined fi-om the Goh 
transformation. In Section 5.2, the inverse of 11 is derived. 
This shows explicitly the characteristics of P near and in the 
limit. The limiting result is consistent with and generalizes 
the result of Kwakemaak and Sivan (1972). 
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5.1. Asymptotic expansion 

In this section, II is expanded around | = 0 as 
oo 

iI = J2y4jT,-. (23) 

383 

1=0 

By substituting (23) into (18) and collecting terms of com- 
mon power, the equations used for finding the JI/'s in (23) 
are obtained in Lemma 8. 

Lemma 8. 

+1 1/2 
n. 211 

^^212 

0 0 

0      iIo22 

11212 

11222 

+ 7 1/4 
0       0 

0      il,22 

+ f' /4 

Li7j,2 

il312 

IIi22 
+ • 

r„Ti 

*«2 

where 

F2Q2FJ = [«i       tt2] 
ff    0 

0    0 

1 r„Ti 

«2 
»1(T«J 

ff > 0 and[ui M2] w unitary. Note that Im «| =ImF2. JI022, 
JIan «»/ il2i2 must satisfy: 

Q = n2uvn2n-Riu (24a) 

0 = n2iiffi72i2 + ^21^022 - -R12. (24b) 

— iIo22 = II022M2 + ^^22^022 — J^WzQliniai — ^22 

+ JlJ,20-|T212, 

^122. i^an and 11312 must satisfy: 

0 = Jl3n«jil2li + 11211^11311, 

(24c) 

(25a) 

(25b) 0 = Il3iiffll212 + iT21lffil312 +^|illi22, 

- J7i22 = ni22(^22 - 622^022) + (-^22 " QjlUf^llf 11122 

(25c) + nj,2ffll212 + ilj,2ffn312, 

^11    ^12 

»21 ^ 22 

r„T 

L»2 J 

r„Ti 

^[M1       «2] 
**2 

[«1   M2] 

fill       fil2 

Qn    Q22 

Rtt    R12 

Ri2    R22 

r„Ti 

L»2. 

r„Ti 

(FiQiFj - B^Q„Bl)    [«,     «2] 

CTF-'C[M,    «2] 

The equations for the higher-order terms can be found in 
Chen (2000). 

Proof, See Appendix A.    D 

In Lemma 9, the solution of (24) and (25) is discussed 
when CF2 ^ 0. In Lemma 10, the solution is discussed when 
CF2 =0 and C(AF2 -F2) 7^ 0. The higher-order cases, such 
as CF2==C(AF2 -F2)=0 and C[AiAF2 -F2)-d/dx(AF2 - 
F2)] ^ 0, can be considered similarly. 

Lemma 9. When CFz + 0, 

0       0 
i7=[tti      tt2] 

0    JI022 

+ f /2 
/I211 n 212 

JI212      Il2i2^2\\^'i.Vl + i7222 
+ ?• 

T 
«2 

(26) 

—IIoii 

= no22(A22-A2lRii^Ru) + (A22 -A2lRii^Rl2fno22 

+ no22(A2lRnAji - e22)il022 

-(Rn-Rj2RnRn), (27a) 

Il2n=RfiRfaRfr"'Rf, 

11212 = ff-'HjlU^lz - 4l^022), 

(27b) 

(27c) 

il222 = i7222(—^22 + fi22iIo22 +^21^211^212) 

+ (-^22 + e22iT022 + ^2in-',n2,2)''ii222.     (27d) 

Proof, See Appendix B.    □ 

Lemma 10, When CF2 = fi and CiAF2-F2)^-0, 

n = [«!       «2t'l      tt202] 

?'/^n3ii + y- j"^n2i2i + 7"'--    y'/^ii2,22+ ?'/*• 

1/2, 7'/*n,22ii+T'/'"-   i'/*n,22i2 + y 

Umiit + y    ■ 

r „T 1 

T  T 

T  T 

(28) 



384 R.B. Chen et al lAutomatica 39 (2003) 377-390 

where Imt>i = ImAti and [vi »2] is unitary. Only the 
lowest-order term of each element is kept for simplicity. 
The equation for each term can be found in Appendix C 
a«rf Chen (2000). 

Proof. See Appendix C.    D 

When CF2 # 0, from Lemma 9, 

n = [Ml    M2] 
0       0 

0    II022 **2 

(29) 

in the limit. Therefore, ker JI 3 Im «i = Im F2 = W2 which 
is consistent with Theorem 5. 

Since the Riccati equation (18) can also be generated by 
solving a differential game similar to the one in Chen and 
Speyer (2000), the result of (26) gives insight into the sin- 
gular differential games in Chung and Speyer (1998) and 
Chen and Speyer (2000). A singular differential game simi- 
lar to the one in Chen and Speyer (2000) is formulated and 
solved by using the Goh transformation to derive the limit 

in the limit. By using Im vi = Imj42i and Im «i = ImFj, 

Im[Mi    M2t>i] = Im[«i    «2ttf(j4«i-til)] 

= Im[Ki    (/ - uiuJ)(Aui -Ml)] 

= Im[«i    Aui-ui]= lm[F2    AF2 - F2] 

Therefore, ker JI D Im [F2 AF2 - F2] = W2 which is con- 
sistent with Theorem 5. 

5.2. Analysis 

In this section, an expression for the inverse of /7 is de- 
rived. This shows explicitly the characteristics of P near and 
in the limit. Only time-invariant systems are considered be- 
cause i7o22 in (29) and JI02222 in (31) may not be invertible 
for time-varying systems. In Lemma 12, P is determined 
when CF2 ^ 0. In Lemma 13, P is determined when CF2 =0 
and CAF2 ^ 0. The higher-order cases, such as CF2 = 
CAF2 = 0 and CA^F2 ^ 0, can be considered similarly. 

Lemma 12. When CF2 ^ 0, 

P = [Ml      M2]     I 
rii-',(n2i2n-2jnJi2 - n4i,)n2-,l   -n^ilnann,-' ^ '022 

^^022^^212^^211 n, -I 
022 

r„Tn 
+ jm... (32) 

of (18) when CF2 # 0 which is 

-S = SA+A^S + S[Bi(FjC'^V-^CF2)-^Bj -FiQiFj 

Proof. By using Lemma 9 and matrix inversion lemma, 
(32) is obtained. 

+B„Q^Bi,]S - C'H^ V-'HC, (30) 
Lemma 13. Mien CF2 = 0 and CAF2 7^ 0, 

P = [Ml      M2»l      «2»2] 

y-3/4pjj+y-I/2. 

y-"^pj2+r"*- 

"'Pi2 + : 
-1/4. 

y-^/^P22 + ... 

Pi+7 1/4. 

Pl3+f"- 

Pn + f"- 

Pn + y'"- 

T  T 

T  T 

(33) 

where A=A- 5I(FJCTF-'CF2)-'FJCTF-'C, Bi = 
^F2 - F2 and ^ = / - CF2(FJCTF-'CF2)-»FJCTF-». 

Theorem 11 shows that the limiting Riccati matrix determi- 
ned from flie perturbation method is the same as that deter- 
mined from the Goh transformation. 

Theorem 11. 

'0 
[«I      «2] 

0 

0 

^022 

Proof. See Appendix D.    O 

When CF2 = 0 and C(^F2 - F2) # 0, from Lemma 10, 

0   0      0   ■ 

0    0        0 

0    0    JT02222 

n — [Ml       «2l'l       «2»2] 

r     T   1 r M{  ^ 
T  T 

T  T 
»2«2J 

wherePfj, i,J=l,...,3,canbefoundinChm(2000). Only 
the lowest-order term of each element is kept for simplicity. 

Proof. By using Lemma 10 and matrix inversion lemma, 
(33) is obtained (Chen, 2000). 

In the limit, when CF2 ^ 0, Lemma 12 shows that P goes 
to infinity along the direction of ImF2. In the limit, when 
CF2 = 0 and CAF2 ^ 0, Lemma 13 shows that P goes to 
infinity along the direction of Im[F2 ^F2]. 

Remark 14. By using the result in Kwakemaak and Sivan 
(1972), for the time-invariant and infinite-time case, under 
the assumption that (C,A,F2) does not have right-half-plane 
invariant zeros. 

(31) rP- 

L- 

0 

'/2F2ef(/TF-'/2 

(34a) 

(34b) 
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as I -* 0 where  U is an arbitrary matrix such that 

To compare this result with Lemmas 12 and 13, (34a) is 
satisfied by multiplying (32) and (33) by j. By substituting 
(32) into (13), 

as y—>0. Therefore, L goes to infinity along the direction of 
y~'/^ImF2 which is consistent with (34b). By substituting 
(33) into (13), 

L -^ y-^'hiPnvJuJC'^V-^ + y'^'^UiViPiivJuic'^V-^ 

as y —* 0. Therefore, L goes to infinity essentially along 
the direction of |~'/^ImF2 which is consistent with (34b). 
However, L also goes to infinity along the direction of 
y~*/*Im «2«i where Im [Fa M2O1] = Im [F2 AF2I. Therefore, 
the perturbation method is consistent with and generalizes 
the result of Kwakemaak and Sivan (1972). 

6. Example 

In this section, two numerical examples are used to 
demonstrate the performance of the optimal stochastic fault 
detection filter. In Section 6.1, the filter is applied to a 
time-invariant system. In Section 6.2, the filter is applied to 
a time-varying system. 

6.1. Example 1 

Consider the time-invariant system fi-om White and 
Speyer(1987), 

■0    3    4- 
0    1    0' 

A- 

F, = 

1    2    3 

0    2    5 

0 

0 

J. 

.     C = 
0    0    1 

where Fi is the target fauh direction and F2 is the nuisance 
fault direction. There is no process noise. To determine the 
optimal stochastic fault detection filter, the power spectral 
densities are chosen as Qi = I, Q2 = I and V = I. The 
steady-state solutions to the Riccati equation (12) when 
y = 10~* and 10~* are obtained, respectively. Fig. I shows 
the fi-equency response fi-om both faults to residual (5). 
The left one is obtained wifli y — W~* and the right one is 
obtained with y = 10~*. In each figure, there are two solid 
lines representing the frequency response fi-om the target 
fault to the residuals using projectors (15) and H, respec- 
tively. Note that these two solid lines overlap. The dashdot 
line and dashed line represent the frequency response fi-om 
the nuisance fault to the residuals using projectors (15) 

10"        10* 10*        10' 
Frequency (rad/s) Frequency (rad/s) 

Fig, 1. Frequency response from both faults to the residual. 
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_ 1.5 - 

.-i   1 - 
Target fault case 

0.5 - 
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. 1-5 
i 

I    1 
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Time (sec) 
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Fig. 2. Time response of tfie residual. 

iMkMhdMdJiiA^ii 
20 25 

and H, respectively. This example shows that the nuisance 
fault transmission can be reduced by using a smaller y while 
the target fault transmission remains large. Furthermore, the 
projector (15), derived from solving the minimization prob- 
lem, is slightly better than H, the projector used by other 
approximate unknown input observera (Chung & Speyer, 
1998; Chen & Speyer, 2000), at low frequency. This sug- 
gests that H might not be the best choice for the approximate 
unknown input observer. 

norm of residual (5) using projector (15) when there is no 
fault, a target fault and a nuisance fault, respectively. The 
faults are steps of magnitude 3 that occur at the fifth second. 
The sensor noise is a zero mean, white Gaussian noise with 
power spectral density of 10~*J. This example shows that 
the residual is very sensitive to the target fault and much less 
sensitive to the nuisance fault. Therefore, the filter performs 
well for time-varying systems. 

6.2. Example 2 

Consider a time-varying system obtained by adding some 
time-varying elements to the time-invariant system in pre- 
vious section, 

F,= 

-cos(0    3+2sin(0 

1 2 

5sin(0 2 

5 — 2 cos(t) 

I 

1 -1- sin(f) 

4 

3-2cos(0 

5-1-3 cos(f) 

while C and Fi remain the same. The Riccati equation (12) 
is solved with Qi = I, Qz = I, V = I, Po = I md y = 
10~* for t e [0,25]. Fig. 2 shows the time response of the 

7. Conclusion 

The optimal stochastic fault detection filter is derived from 
solving a stochastic minimization problem. In the limit, the 
filter recovers the geometric structure of the unknown input 
observer md the nuisance fault is completely blocked. When 
it is not at the limit, the filter is an approximate unknown in- 
put observer and the nuisance fault is partially blocked. The 
perturbation method used to obtain the limiting and asymp- 
totic behaviors of the filter can be applied to other approx- 
imate unknown input observers (Chung & Speyer, 1998; 
Chen & Speyer, 2000) derived by solving differential games 
which consider the worst-case scenarios. For time-invariant 
systems, the filter performance can be enhanced by replac- 
ing the nuisance fault directions with the invariant zero 
directions. This notion can also be applied to other approxi- 
mate unknown input observers. Finally, filter designs can be 
obtained for both time-invariant and time-varying systems. 
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Appendix A. Proof of Lemma 8 

By substituting (23) into (18) and collecting terms of 
common power, 

r':0 = noe2iTo, 
-3/4 . n _ o=jiie2iTo+iioe2ii,, 

-1/2 . n _ 0 = ilaaiTo + iliOiili + iTofeila, 

-1/4. 

„0 . 

:0 = n3e2il0+ 11202^1 

+/i,e2n2 + iiofi2n3, 

-Jio = EQA + A^Ho - C^v-^c + n^QiHo 

(A.la) 

(A.lb) 

(A.lc) 

(A.ld) 

+ 11322111 +il2S2il2 

+niQiHj + no&n^ - n^Qin^,     (A.ie) 

f'/* : -til = TIxA + A^Ui + Hsa/To + U^QtEi 

+17302112 + /I2fi2il3 + H, e2il4 

+ iloailj - iTifiiilo - iloSin,.     (A.lf) 

where Q2 = FiQiFj and g, = FiOiFf - 5«e^Bj. 
From (A.la), Ho can be written as 

JIo = [«i      «2] 
0       0 

0      no22 

r.,Ti 

T 
J   L«2J 

= «2i7o22«|, (A.2) 

where II022 is to be determined. (A.lb) is trivially satisfied 
because of (A.2). By substituting (A.2) into (A.lc), JIi can 
be written as 

JIi = [M,     M2] 
0       0 

0      11,22 

r„Ti 

«2 
■■ «2iIl22M|, (A.3) 

where JI122 is to be determined. (A.ld) is trivially satisfied 
because of (A.2) and (A.3). 

Let 

ila = [«i    «2] 
^211      i7212 

^212    ''^222 

(A.4) 

By multiplying (A.le) by [«i uzf fi'om the left and [M, 1*2] 
fi-om the right, and substituting (A.2), (A.3) and (A.4), (24) 
is obtained. Let 

il3 = [Ml       «2] 
JI311    Hi 12 

L^312      ^322 
(A.5) 

By multiplying (A.lf) by [«, mf fi'om the left and [KI 1*2] 
fi-om the right, and substituting (A.2), (A.3), (A.4) and 
(A.5), (25) is obtained. The same procedure can be used 
to obtain the equations for the higher-order terms if needed 
(Chen, 2000; Chen, Mingori, & Speyer, 2001). 

Remark 15. Since Im«i = ImF2, «i can be chosen as 
FziFjFjT^I^. Since [M, K2] is unitary, K2 has to satisfy 
ulu2 = 0 and «JM2 = /. Define {/,=/- muj. Since 
MJ£/I = 0, the first column of «2, called M21, can be cho- 
sen as «2i = UuiUjiUii)~^l'^ where Uu is any nonzero 
column of Ui. Next, define 1/% = I - [«i M2I][«I «2if • 
Then, the second column of K2, called K22. can be chosen as 
«22 = U2iiU^U2t)~^l^ where U2i is any nonzero column of 
U2. Other directions of «2 can be obtained similarly. «i and 
ut can also be obtained since «, and H2 are expUcitly writ- 
ten as fiinctions of time. For time-invariant systems, [M. Ma] 
can also be obtained from the singular value decomposition 
ofF2Q2Fj and [«i tia] = 0. Note that [«, M2] is generally 
not unique. However, the theorem and all lemmas in Sec- 
tion 5 are trae for any [K, U2I satisfying Imwi = ImF2 and 
[«! M2] is unitary. 

Appendix B. Proof of Lemma 9 

When CF2 ^ 0, ^11 is positive definite because ImM, = 
ImFa. Then, from (24a), (27b) is obtained. Note that Il2n 
is positive definite. From (24b), (27c) is obtained. By sub- 
stituting (27c) into (24c) and using (24a), (27a) is obtained. 
Therefore, die zeroth-order term JIo (A.2) can be obtained 
from (27a). Part of the second-order term II2 (A.4) can be 
obtained from (27b) and (27c). 

From (25a), n^n =0 because a and JI211 are positive 
definite. By substituting Em — 0 into (25b), 

11312 = -ff-'JI^,',4,JI,22. (B.l) 

By substituting (B.l) into (25c), 

Ii,22 = /I|22(-^22 + 02271022 +^2lilril/l212) 

+ (-^22 + fi22il022 + ^2llIJ," n2,2)'^iTi22.      (B.2) 

Since (B.2) is a homogeneous equation and the initial con- 
dition is zero, JI122 = 0. By substituting JI122 = 0 into (B.l), 
7^312 = 0. Therefore, the first-order term JIj (A.3) and part 
of the third-order term il3 (A.5) are zero. Similar procedure 
can be used to obtain (27d) (Chen, 2000; Chen et al., 2001). 
Therefore, the second-order term il2 (A.4) can be obtained 
fi-om (27b), (27c) and (27d). Similar procedure can be used 
to obtain the equations for the higher-order terms if needed 
(Chen, 2000; Chen et al., 2001). It can be shown that the 
rest of the odd terms (i.e., 113,11$,...) are zero. Therefore, 
when CF2 ^ 0, the expansion of 77 (23) only needs to be 
in the order of |'/^. 
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Remark 16. Since Jlan and JI212 are obtained from alge- 
braic equations (27b) and (27c), the initial condition n{t(^)= 
P0 cannot be satisfied in general. This is because the di- 
mension of the Riccati equation (18) is reduced in the limit 
as I —» 0 which leads to the occurrence of a boundary layer 
(Nayfeh, 1973). The expansion of il (26) is called the outer 
expansion and valid everywhere except near T=0. The inner 
expansion, which is valid only near T = 0, can be obtained 
by using different fast time scales (Nayfeh, 1973). Since the 
inner expansion is only valid for a very short period of time, 
only the boundary layer is obtained and used as the initial 
condition of the outer expansion (Chen et al, 2001). Note 
that in the limit, the fast time scale goes to infinity and there 
is an instant jump at the initial time which is consistent with 
the Goh transformation (Chen & Speyer, 2000; Chung & 
Speyer, 1998). 

Appendix C. Proof of Lemma 10 

WhenCF2=0,.Rii=0and^i2=0becauseImM,=ImF2. 
From (24a), Han = 0 because a is positive definite. By 
substituting ITaii = 0 into (24b), JIo22^2i = 0. Then, JT022 
can be written as 

22211 

L 22212 

^2212 

:;2222 

R 2211 R 2212 

^2212      -^2222 

r.,Ti 

L''2. 

r„Ti 

QlllVl       »2], 

L''2 J 
*22[«'l       U2]. 

Since Im«i = ImFa, Cui = 0 and C{Aui - ui) ^ 0. 
Since ^2211 = vJuJC'^r-^Cu2Vi and Imv, = ImAzu Rj 
is positive definite because 

^221! 

0        0 
i7022 = [Vl      V2I 

Let 

IltU = [il212I      il2I22] 

0    JT02222J ["J. 

r T t> 1 
T 4 

(C.l) 

(C.2) 

AjiuJc'^V-^CuiAn 

= (ujA^ti2 - u\u2)uic'^V~^Cu2iulAui - MJ«]) 

= («]"# - M1)(/ - «,«J)CTr-'C(/ - uiuJ)iAui - K,) 

= iAui-uifc'^V-^C(Aui-ui)>0 

Then, ilaui is invertible. From (C.3b), 

i72i22 = ff'''i7f,f,(522i2 - ^1221^02222)- (C.4) 

By substituting (C.4) into (C.3c) and using (C.3a), 

— JI02222 = ffo2222(-^2222 — ^2221^M1I-^2212) 

+ (-^2222 — ^42221^^^11^2212)^^102222 

+ ^02222(^2221^^11^2221 ~ 22222)i7o2222 

-(^2222 -^2212^2211^2212)- (C.5) 

Therefore, the zeroth-order term JIo (A.2) can be obtained 
firom (C.l) and (C.5). Similar procedure can be used to 
obtain the equations for other terms (Chen, 2000; Chen 
et al., 2001). Therefore, JI can be expressed as 

n=[Ml   M2] 
y'/^ilL + l'/"---    [«i    V2] 

fl^nn2-¥l"'-- 

f'*ni22u+f'^---   f'^nnm + i 1/2. 

y "12212 + 1 

r.,Ti Ul 
r«Ti 

i^i 
.,T 

[41 
1^2 1 

By multiplying (24c) by [vi V2f fi-om the left and [»i V2] 
from the right, and substituting (C.l) and (C.2), 

0 — n2i2i<rll2ni — Run, 

0 = n2i2iaTl2n2 +^2221^02222 — ^2212. 

(C.3a) 

(C.3b) 

'/'••• iIo2222 + T'/'-- 

which can be written as (28). 

Appendix D. Proof of Theorem 11 

Since SF2 =0 (Chen & Speyer, 2000), S can be written as 

S = [«i     M2] 

— /I02222 = ^02222^2222 + ^^2222^02222 — iIo2222 22222^^02222 

— .R2222 + W2I22^-'72I22. 

where 

^2211    ^2212 

^^2221      ^2222 

0    0 

0    S 

„T1 

r«T 

L«'2J 

r..Ti 

^22[f 1      V2I - 
Vi 

(C.3c) 

[Vl       «>2], 

By multiplying (30) by  [ui   U2f  from  the  left and 
[«i   M2]   from  the  right,  subtracting  [KI   «2]^S[MI   M2] 
and [MI «2]^5[MI «2] from both sides, and using [ui uj] 
[«i mf = I, 

0     0 

0 
= S\+Si +S2— So, (D.l) 
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where 

Si = 
0    0 

0    S 

An    An 

Ml      ^22 

r.,Ti 

-Ic-T^T Bi(FlC'V-'CF2)-'FiC'V-'C[ui    «2]   . (D.2a) 

B,(F2'C'F-«CF2r»B{[«,    «2] 

(D.2b) 

ic-T FiiFiC'V-'CFir^Fi 

[«I       «2] 
^11     ^1 

A 12 t22 
(D.2c) 

Since Imaj = ImFa, let «i = F2Z where S satisfies 
i^FjFtS — I because ujui = I, By using MJ = F2Z and 

«jF2(FjcTF-'CF2r'Fj«, = [ZT(Ff CTF-'CF2)X]-' 

= ^n- (D.3) 

By using KJF2 = 0 and (D.3), 

0 0 

0    R22 — R12R11 Rn _ 
So = (D.4) 

Since «i = F2Z+F2Z', MJ« I = ujFiZ because MJFJ = 0. 
By using Bi = AF2 — F2, «i = F2Z and a|F2l' = «Jii 1, 

i^BiX=A2i. (D.5) 

By using (D.3), «, = F2r, Z"' = E^FjFi and (D.5), 

-I4T 
%i- «JB,(FJCTF-'CF2)-'BI«2 = ^2i«ri'4 

By using (D.6), 

'0 0 
52 = 

[0 i(^2i^n'4i-e22)sj 

By using u\ = FzX and (D.5), 

«Jfii(FjC'^F-'CF2)-'Fjc'^F-'C«, =^21- 

By using (D.3), M, = Fji:, Z"' = ZTFJFZ and (D.5), 

ttj5,(FjcTF-'CF2)-'FjcTF-'CM2 =^2i5n'^,2. (D.9) 

By using (D.8) and (D.9), 

To 0 

0    S{A22-A2xRTlRn)^ 

(D.6) 

(D.7) 

(D.8) 

5,= (D.IO) 

By substituting (D.IO), (D.7) and (D.4) into (D.l), 

-1 = 1(^22 - A2iRTiRn) + (^22 - A2xRjiRnfS 

+ 5(^2i^-'4,-022)5 

-(«22-*T2^ri'^I2). (D.ll) 

By comparing (D.l 1) with (27a), S = J7o22. 
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Abstract 

Many fault detection filters have been developed to detect and identify sensor and actuator faults. 

An approach to fiirther reconstruct sensor and actuator faults from the residual generated by the fault 

detection filter is proposed. The transfer matrix from the faults to the rraidual is derived in terms of 

the eigenvalues of the fault detection filter associated with the invariant subspaces of the faults and the 

invariant zeros of the faults. For each fault, all po^ible fault reconstruction processes are derived and 

parameterized by applying a projector to the transfer matrix and taking inverse. Then, the optimal fault 

reconstruction process is determined by minimizing the ratio of the H2 norm of the projected transfer 

matrix from the disturbance to the H2 norm of the projected transfer matrix from the fault. For the 

existence of the fault reconstruction proems, the invariant zeros of the fault have to be in the left-half 

plane. Rirthermore, for reconstructing a sensor fault, the system has to be detectable with respect to 

the other sensors. 

1    Introduction 

Any system under automatic control demands a high degree of reliability in order to operate properly. If 

a sensor fails, the controller's command will be generated using incorrect measurement. If an actuator 

fails, the controller's command will not be applied properly to the system. Therefore, one needs a health 

monitoring system capable of detecting a fault as it occura and identifying the faulty component. This 

process is called fault detection and identification. One approach to fault detection and identification is the 

fault detection filter which was first introduced by [1] and refined by [2]. It is also known as Beard-Jones 

detection filter. A geometric interpretation and a spectral analysis of the fault detection filter are given in 

[3] and [4], respectively. The idea of the fault detection filter m to place the reachable subspace of each fault 

into invariant subspaces which do not overlap each other. Then, when a nonzero residual is detected, a fault 

can be announced and identified by projecting the residual onto each of the invariant subspaces. Design 

algorithms have been developed to improve the robustness of the fault detection filter [5, 6]. 
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Figure 1: Fault detection, identification and reconstruction 

When these faults occur, the residual only has a transient response and becomes zero after a while even 

though the faults still exist. A bias in a single position sensor is one possible example. However, for some 

of these faults, the fault reconstruction process can still generate the magnitudes of the faults even after the 

residual becomes ssero. 

In Section 2, the background of the fault detection filter is given. In Section 3, the transfer matrix from 

the fault to the residual is derived. In Section 4, the reconstruction of sensor and actuator faults is discussed. 

In Section 5, a numerical example is given. 

2    Fault Detection Filter Background 

In this section, the background of the fault detection filter is given [1, 3, 4, 9]. This is important because 

the fault reconstruction process uses the rraidual generated by the fault detection filter to generate the 

magnitudes of actuator and sensor faults. 

Consider a linear time-invariant system. 

X = Ax + Bu 

y = Cx 

(la) 

(lb) 

where u is the control input and y is the measurement. The tth actuator fault can be modeled as an additive 

term in the state equation (la) [1, 4]. 

x= Ax + Bu + FaHa 

where Fa is the tth column of B and ^a is an unknown and arbitrary scalar function of time that is zero 

when there is no fault. The failure mode Ha models the time-varying amplitude of the actuator fault while 

the failure signature Fa models the directional characteristics of the actuator fault. The ith sensor fault can 

be modeled as an additive term in the measurement equation (lb) [1, 4]. 

y = Cx + EsUs (2) 



The fault detection filter gain L is chosen such that A-LCm stable and there exists an invariant subspace 

% for each fault Fj. ^ is called the minimal (C7,4)-unobservability subspace or the detection space of Fj. 

Assume that the invariant zeros of {C,A,Fi) have the same geometric and algebraic multiplicities. Then, 

Ti can be obtained by 

% = Wi®Vi (7) 

where Wj is the minimal (C, j4)-invariant subspace of Fj given by the recuraive algorithm 

Wj=+^=ImF<e^(W*nKerC)    where    Mf = 0 (8) 

and Vi is spanned by the invariant zero directions of {C,A,Fi). The invariant zero of {C,A,Fi) is defined 

^ A-zI   Fi'^ 
as z at which 

the null spa^e as 
0 

\mm rank. The invariant zero direction v is formed fi-om a partitioning of 

A-zI   Fi 

C        0 
= 0 

When dim Fj = 1, the recuraive algorithm (8) implies 

Wi = Im [ Fi   AFi    ■■■    ^**Ff ] 

where h is the smallest non-negative integer such that CAhFt ^0. It is assumed that Ti---Tg axe inde- 

pendent. K they are not independent, the faults can only be detected, but not identified. This condition is 

called output separability. It is also assumed that (C, ^4, [ Fi • ■ • F, ]) does not have more invariant zeros than 

(C, A, Fi) • • • (C, A, Fg). K it does, the extra invariant zerce will become part of the eigenvalues of .4 — LC. 

This condition ia called mutual detectability. For more details, please refer to [3]. For the algorithms to 

form the fault detection filter gain L, please refer to [4, 5, 6]. 

When there is no fault, the residual is zero after the transient response due to the initial condition error 

because A - LC is stable. When the fault /Xj occura, the residual becomes nonzero, but only in the direction 

of CTi because ImFj C 7J and (A - UJ)% C %. By using a projector 

1-1 
Hi = I- Ker Hi [(Ker Hif Ker H^   ^ (Ker Hif (10) 

where Ker flj = [CTx • • • C%^i CTi+i ■ • • CT^ ], the projected residual Hit is only sensitive to the fault ^, 

but not to the other faults Hj^i. Therefore, the fault detection filter can detect and identify actuator and 

sensor faults. 



After the faulty sensor or actuator has been detected and identified, the system may switch to an 

identical redundant sensor or actuator. If such sensor or actuator is not available, the controller has to 

be reconfigured based on the remaining non-faulty sensors and actuators. However, if the magnitude of 

the sensor fault can be obtained, the correct measurement can be obtained by subtracting the fault from 

the faulty measurement. Then, the controller may continue to function normally without the need for 

reconfiguration. This is particularly useful when an intermittent sensor fault occurs. If the magnitude of the 

actuator fault can be obtained, the control input applied to the system can be obtained by adding the fault 

to the control command. Then, the condition of the actuator can be diagnosed and the controller can be 

reconfigured such that the faulty actuator may be compensated. For example, if a bias is developed in the 

actuator, it may be compensated by reconfiguring the controller given the size of the bias. If the actuator is 

stuck in certain position, it can be diagnosed because the control input would be a constant regardless of the 

control command. Then, the controller may be reconfigured by using the remaining non-faulty actuators to 

compensate the faulty actuator allowing continued operation of the system. Therefore, fault reconstruction 

increases the flexibility of the ^stem's reaction to sensor and actuator faults. 

In this paper, an approach for reconstructing sensor and actuator faults is presented. The fault recon- 

struction process generates the magnitudes of sensor and actuator faults using the residual generated by 

the fault detection filter. The block diagram is shown in Figure 1. The transfer matrix from the faults to 

the r^idual is derived in terms of the eigenvalues of the fault detection filter associated with the invariant 

subspaces of the faults and the invariant zeros of the faults. By applying a projector to the transfer ma- 

trix, a projected residual that is only sensitive to one fault, but not to the other faults, is obtained. By 

taking the inverse of the projected transfer matrix, all possible fault reconstruction processes are derived 

and parameterized. Then, the optimal fault reconstruction process is determined by minimizing the ratio of 

the Wa norm of the transfer matrix from the disturbance to the projected residual over the Wa norm of the 

transfer matrix from the fault to the projected residual. For the existence of the fault reconstruction process, 

the invariant zeros of the fault have to be in the left-half plane. JHirthermore, for reconstructing a sensor 

fault, the system has to be detectable with respect to the other sensors. Note that the fault reconstruction 

process can also be derived numerically from the state-space models of the plant and fault detection filter by 

using the Silverman's algorithm [7, 8]. However, the Silverman's algorithm can produce only one particular 

fault reconstruction process which k not optimal in general. Furthermore, the existence conditions and the 

analytical structure of the fault reconstruction process cannot be obtained. 

In addition to be used for fault reconstruction, the transfer matrix from the faults to the residual provides 

a frequency domain interpretation of the fault detection filter which complements the geometric interpreta- 

tion by [3]. The transfer matrix provides information about the transient and steady-state responses of the 

residual to the faults. It is shown explicitly the types of faults that the fault detection filter cannot detect. 



where E^ is a. column of zeros except a one in the ith position and fj,^ is an unknown and arbitrary scalar 

function of time that is zero when there is no fault. The failure mode n^ models the time-varying amplitude 

of the sensor fault while the failure signature B^ models the directional characteristics of the sensor fault. For 

the purpose of fault detection filter design, an input to the state equation (la) which drives the measurement 

in the same way that /j.^ does in (2) is obtained as in [9]. Define a new state x = x + f^/j.^ where E^ = Cf^. 

Then, the dynamic equation of x and (2) can be written as 

S = Ax + Bu+[ f^   /, ] Ms 

-Ms 
(3a) 

V = Cx (3b) 

where fs = Afg. Hence, for fault detection filter design, the sensor fault can be modeled as a two-dimensional 

additive term in the state equation as in (3). 

Therefore, a linear time-invariant system with q„ actuator faults and q^ sensor faults can be modeled as 

i = Ax + Bu + '^ FaiHai 
i=l 

y = Cx + '^Esifis 
i=l 

However, for fault detection filter design, the following system is used. 

9a 

i=Ax+Bu+Y,F^in^,+£;[/,, li ] 

y = Cx 

t=i <=i 
= AE + SU +j^Fj^i 

i=l 

(4a) 

(4b) 

(5a) 

(5b) 

where g = «„ -h g,. For i = 1 • • • g„, Ft = F„i and ^i = /x„i. For i = 1 • ■ ■ g„ Fi+,. = [/,< /,<] and rt+,„ = 

[hi  -M«]^. 

Now the fault detection filter will be introduced from the geometric point of view [3]. The design 

algorithms [4, 5,6] are omitted because only the geometric properties of the fault detection filter are involved 

with the derivation of the fault reconstruction process. Araume {C, A) is observable. Fault detection filter 

is a linear observer in the form of 

x = Ax + Bu + L{y- Cx) 

r — y — Cx 

(6a) 

(6b) 

where r is called the residual. By using (5) and (6), the dynamic equation of the error e = x-x and the 

residual can be written as 

9 

e = iA-LC)e + Y,Fm 

r = Ce 

t=i 



3    Transfer Matrix from the Fault to the Residual 

In this section, the transfer matrix from the fault to the residual is derived in terms of the eigenvalues 

of the fault detection filter associated with the detection space of the fault and the invariant zeros of the 

fault. This gives a frequency domain interpretation of the fault detection filter which complements the 

geometric interpretation by [3]. The transfer matrix provides information about the transient and steady- 

state responses of the residual to the fault. It is shown explicitly the types of faults that the fault detection 

filter cannot detect. In Section 3.1, the actuator fault is considered. In Section 3.2, the sensor fault is 

considered. 

3.1    Actuator Fault 

R-om (4) and (6), the transfer matrix from the actuator fault fj,ai to the residual r is 

r(s) 

Moi(«! 
= CisI -A + LCY^F^ 

When (C, A, F^i) has Pai invariant zeros at Zai,i • • • Zot,p„j, from (7), the detection space of Fat is 

where kai te the smallest non-negative integer such that CA'^"Fai ^ 0 and i/ai,i • ■ • Vai.pat are the invariant 

zero directions. Let Sat = dim^j = kai +Pai + l- Assume that Xai,i ■ • • Xai,Sai' the eigenvalues of ^ - LC 

associated with Tai, are distinct. Since Tai spans Sai eigenvectors of ^ - LC, 

(A — LiCifXj — AnijXj (11) 

where j = 1---Sai and 

Fai    AFai    •■■    A'^'^Fai    Vai,l Xi    X2 XSai   J 

"1,1       Ol,2 

02,1       "2,2 

«1,5.< 

«2,«„i 
(12) 

If Ao»,i • • ■ ^ai.Sai are not distinct, (11) may be modified with the generalized eigenvectors. For 1 < Jfc < kai, 

iA-LC)A''Fai = iA- LC)A''Fai -{A- LC)LC A'''^ Fai = {A- LCfA^'^Fai = ■■■ 

= (A- LCf+'Fai = iA- LCf+' J^aj,^xj = £Aj+|a,,ia:, 
j=i i=i 

and 

(A - LC)A''Fai = (A- LC)^aj^k+iXj = J^^^iJ^i.k+iXj 
j=i i=i 



The resulting relationship is 

for j = 1. • • 6ai and fc = 1 • ■ • Aoi- For 1 < fc < p^i, by iising (9), 

(A - LC)Va.i,k = AVai,k = Zai,kVai,k - FaiV^i^k = ^^(Zai,kaj,k+kai+l ~ '>ai,kaj,l)Xj 

(13) 

and 

3=1 3=1 

Araume that Xatj ^ Zai,k, the resulting relationship is 

%-,fe+fc.<+i 
Vai,kaj,l 

z-,-X-- (14) 

for j = 1. ■ • 5aj and fc = 1 • ■ -pai.   For the case where Xai,j = Zai,k, please see Appendix.  By substituting 

(13) and (14) into (12), 

[Fai     AFai     •••      A>'-'Fai     Vai,l     "•      I^oi.pa,   ] 

1       Aai,2 
oi,ia;i    a2,ia;2   ■••   a*„i,ia;i„j 

kai A«J 

'^'<-Pfl< 

'0».2 2oi.l-A 

-Aas.l 

1      Aot.i. A?? i^aig 
'aijtfai       2as,i—^ 

^aiip^l —'^aJjS 

2oi,p„;~Aoi^^ 

(15) 

Rom (11), 

(8I-A + LC)xj = (s - Aai,j)a;j =^ («J - A + LCy'^Xj = 

Then, 

C(sJ - ^ + LCr^Fai = Y^ -^ Cxj = C I ar,^x^   0^,1X2 
j=i *     ".J 

By using (15), 

CisI -A + LCy^Fai = CA^'^Fai [ 0   • • • 

1 Agj^l 

1       Aaj_2 

<^SaulXSa 

1 
8—Ao<,2 

-    *~^o«,*„ 

(16) 

0   10 °] 
\feoi 

xfe.i 

-1 
'■P»i 

'.Poi~'^"».l 

1    Aoj ■ui.Sa A*?'. 

2ai,l~Aai,2 

'at.l 

'■Pgi 

O»,*oi 2oi,l-Aai,i 

S-A„ 

«—Aa 

S—Aa 



By using Cramer's rule in matrix theory [10], 

C(sI-A + LC)-^Fai 

1       X  .,       ...      X*"~^ 

det 
1       Ant a»,2 

fcoi-1 1 

fgi.l 

ai,2 S—Xa 

Pa«,l 

■'Poi 
^QIIPQI     ^aijl 

•■p»« 
S^aijPgf     Aajj2 

1   A, ai,Sa 
Vai,l 

ai,Sai S-Xai,t^i 2oi,l-Aai,« 

det 

1       Aaj^i 

1       Aoj,2 

1     Ant aij^Q 

\fcoi 

fai.l 

Pgt.l 

^■Pffj 

I.Poi     -^gi.l 

«'oi,: Pai_ 
*aj,|>jj|    ^-^01,2 

2£s£_ 

- CA'"'^F,i        (17) 

By using the determinant operations in matrix theory [10], the numerator of (17) becomes 

det 
Ilj=l(^~ ^ai,j 

EfM^-^ aijj 

Therefore, from (17), 

s - Aoi.i (S - Aai i)ASir' 1 
Pai,l(s -A 

-A„ 
•M)      ... 
*,1 

P„i.p.,(s-A„i,i) 
2ai,p„j-Aol,l 

s ~" ^ai,Sai (s — Aa»,«„i)Ajj|j^^      1 
2ai 

if; 
,1- 

—Asi.l X*«« 1 Vai.ll^-Zai.l) 

et ^ 

~^ai,Sai - \fcoi 1 •'ai.lCs-Sai.l) 

1       Aai,l 
•/o*,! "»*.?„<                1 

So 1,1—Aaj.l Sal.p.j—Aoi,l 

et 

_  1     ^ai.Sai     • 
\fcoi P«,l P»*,P»4 

Zat i-Aoi,{^j «oi Pai—'^'^^f^ai     - 

r(3) 115=^ (s- Zai,j) -74fc.il "*   . 18) 
M«iW  n*^i"'"'^'(s-A.i.,) 

Remark 1. When ^aj(t) = I3J=i aje'=«*.J* where a^'s are arbitrary constants, r(t) becomes zero after 

a while [11]. Therefore, the fault detection filter cannot detect this type of actuator faults because the 

residual only has a transient response when the faults occur. For example, if (C, A, Fat) has an invari- 

ant zero at the origin, the fault detection filter cannot detect the actuator fault if it is a bias.       « 

3.2    Sensor Fault 

R-om (4) and (6), the transfer matrix from the sensor fault figi to the residual r is 

r(s) 

Mst(S; 
= Esi - C(sl -A + LC)-^LEsi = 0(5/ - A + LC)-^ {(si - A + LC)f,i - LCU 

= sCisI -A + LC)-^f,i - C{sl -A + LC)-^f,i (19) 



because E^i = C/« and f^i = Afsi- Note that [f^i fsi] is used for fault detection filter design. When 

iC,A,fsi) has psi,i invariant zeros at Zsi.i • • • ^si,p,j,i, the dimension of %i^i, the detection space of f^i, is 

Psi,i +1 because Cf^ = Esi ^ 0. When {C, A, f^i) has p^i^ invariant zeros at 2si,p,i,i+i • • • ^«,p,i,,+p,i,2, the 

dimension of %i^2, the detection space of f^i, is k^i + p«,2 + 1 where ksi is the smallest non-negative integer 

such that CAi'-f^i ^ 0. For the fault detection filter, T^.i © r«,2 spans hi+Psi,i +Psi,2 + 2 eigenvectors 

of A-LC. For the fault reconstruction process, it is assumed that T^j^ and %i^2 span p^i^i +1 and 

ksi +Psi,2 + 1 eigenvectors of ^ - LC, respectively. This can be achieved by considering f^j and fsi as two 

separate faults when designing the fault detection filter. It is also assumed that (C, A, f^i) and {C, A, f^i) 

are mutually detectable. 

By following the same derivation in Section 3.1, 

C(sI-A + LC)-^U, 

TP««,1+P.<,2 

Cfs; 

C(sl -A + LC)-^fsi =     ^ l'^"'       ,, 
ilj=P.i,l+2 

■0^*"/, Sgi f  ^ 

{S — Asij) 

where Ai • • • Xp,^^+i and Ap,, j+a • • • H.i+p,i,t+p.t,^+2 are the eigenvalues of the fault detection filter ^soci- 

ated with T^t^i and %tfi, respectively. Therefore, from (19), 

s)        sT^=-i(s-Zsi,j) 
Esi — ■ 

nP.i,l-l-p.M, X 

■CA""/, fe,i X (20) 
H'StK^J        lli=l      lS-Asj,jJ lli=p,i,i+2 (S-Asi,j) 

Remark 2.   For certain type of sensor faults, the residual only has a transient response when the faults 

occur and becomes zero after a while even though the faults still exist. Consider the following system 

xi All   0 

*2 A21    0 

Cxi     _     C   Q        xi 

X2 0    1 a;2 

Xi 
+ 

Bi 

X2 [B2 J 

y- 

For the fault in the sensor that measures X2, its fault directions are 

E,= Is     Js 

0 0 

1 0 

Then, the transfer matrix from the sensor fault to the residual is 

r(s)  _  sflfMs-Zsj) 

Ms)    TlW'is-K;i) 
Es 

When the sensor fault is a bias, the residual become zero after a while because the transfer matrix has 

a zero at the origin [11]. Therefore, the fault detection filter cannot detect this type of sensor faults 

because the residual only has a transient response when the faults occur.   Note that the zero at the 



origin is not an invariant zero of the fault. One possible example is the bias in a single position sen- 

sor, i.e., x^ is the integral of one of the states x^. R-om the physical point of view, this is consistent 

with the fact that the other states are not affected by the position and only affect the derivative of 

the position. Therefore, they cannot be used to detect the bias in the position sensor. However, the 

fault reconstruction process, discussed in Section 4, can still generate the magnitudes of the faults even 

after the residual becomes zero.    This is demonstrated by the numerical example in Section 5.       « 

4    Fault Reconstruction 

EVom (18) and (20), the relationship between the residual and all the actuator and sensor faults can be 

exprrased as 

r si 
nfcai+Poi+l/    _\    ,  : 

9a 

E 

+E ^Wt^-^si^ 

■CA''"Fai   Moi(s) 

Ea- CA'^-'U fJ'siis) (21) 
_  _     j=l       {S      Ast,j) lli=p,i,i+2 (S-^si,j) 

In Section 4.1, the reconstruction of the actuator fault is discussed. In Section 4.2, the reconstruction of the 

sensor fault is discussed. 

4.1    Actuator Fault 

In order to reconstruct the actuator fault Hat, a projected residual that is only sensitive to fiai, but not to 

the other faults, is needed. Define a projector Hat that annihilates all the faults except fiai- 

Hai = I- Ker Hai [(Ker Ha^"^ Ker F„i]   ' (Ker H^^"" (22) 

where KerHoj = Im[C4*°»Fai 04''«=F„2 ••• C^*».*-»F„,i_i CA^'-**^Fa,i+i ■■■ C^*^-.»-F„,,„ E^i E^2 

• •. Ea,q, CA'^'^f^i C^*'2/s2 • • • CA*'.»./s,,, ]. Note that Hai is the same as the projector (10) used by 

the fault detection filter. By operating Hai on the residual, (21) becomes 

rV      / » lli=l(*      ^ai,j} »     ^ jfc . r-. 

lf.^J^-^<+^S-Xai 
Paiis) 

a%,}) 

Therefore, the projected residual Hair is only sensitive to iia,i, but not to the other faults. Let qai be a TO 

by 1 vector where m is the number of the measurements. By operating qai on HaiV, the actuator fault Hai 

can be reconstructed from the projected residual Hair by using 

rfeoi+Poi+l/ 

Mot(s) = 
iii^*:^(s-A„i,i) ^ 

gSH„iC4fe.<F„i      Il?i (s - ^ai,i) 
TaiHair(s) (23) 

10 



if all the invariant zeros of {C, A, Fail are in the left-half plane. Since CA*^»*F^i g Ker Hai, HaiCA''" F^i ^ 0 

and there exists q^i such that g5A„iCA*"F„i ^ 0. For example, g„i = #„iCA*"Fai. Note that the Silver- 

man's algorithm requires the left inveree of HaiCA''"Fai [8]. Also note that (23) is not proper. In order 

to avoid differentiating and amplifying the disturbance, a {kai + l)-dimensional low-pass filter with poles 

assigned as butterworth coniguration may be used at the expense of introducing a delay in reconstructing 

the actuator fault. 

Since g^j is not unique, an optimization problem is formulated to determine qai by considering the 

disturbance. Consider the system (4) with the colored noise w, 

X-=^ Ax + Bu + B^W + '^FaiHai 
t=i 

y = Cx + D^w+ ^EsiiJ.si 
j=i 

where w = Aw + w and w is the white noise. Then, 

q%Hair(s) = qaiG^aMlJ-aM+q^iG^^Mwis) 

where (7^„,(s) = jiSflll7^^'!:l\,^ HaiPA'^-^^Fai and G„,,(s) = HaAC{sI - A + LC)~^{B^ - LD^) + D, 

(si - ^~^- The optimal Qai is determined by minimizing the ratio of the H^ norm of the transfer mat 

from w to q^iHaiT over the H2 norm of the transfer function from Hai to q^HaiV. 

rix 

min J = min llggiQittatia 
(24) 

9" 9«i   \\q^iG^J\l 

This minimization problem can be solved by rewriting the cost criterion as 

J = WlaiGmai III - llkJiG^ai III = ql^Watqai - l/qliG^^.qai 

where 7 is a Lagrange multiplier, G™„, = i S^^G^^,(jw)(^J-jw)dw and G^„, = i X!^G^,,(i«;) 

^aii~3'^)^'^- Note that G„„. and G^„j can be computed by using their state-space models [12]. For ex- 

ample, G^„, = HaiCW^^^CFHai where W^^. is the controUabiHty gramian of {A - LC, Fai) and G„,, = H^i 

[ C D^ ] W^„i [ C D„ THai where Wu,^^ is the controllability gramian of 

FVom the first-order necessary condition, 

o— = fatt'wa* - JlaiGn^i =0=> Gyj^^qai = iGy.^^qai 
*^<dai 

A-LC   By,-LD^ 

0 A 

(25) 

Therefore, the optimal qai is the generalized eigenvector of (G^.^.G^^J associated with the smallest gen- 

eralized eigenvalue and the optimal J is the smallest generalized eigenvalue. Note that the ranlra of Gt„^, 

and G^„, are m - dim(Ker Faj) and 1, respectively. To solve for the generalized eigenvector, it is more 

numerically robust if the dimension of G„„j and G^„, is reduced from TO to m - dim(Ker F^i). 

11 



4.2    Sensor Fault 

In order to obtain a projected r^idual that is only sensitive to the sensor fault psj, but not to the other 

faults, a projector Hsi,i is defined as 

#«.i = J - Kerfl^,i,i [(KerH«,i)^Kerfl-,i,i]"' (KerH^i^^f (26) 

where KerF«,i = Ini[0#-'F„i CA^'^Fa.2 •■• CA*".'-F„,,„ E,i E,^ ■■■ B.,,, C#'»/,i C^*»^/,2 ••• 

<7A*».*-»/s,i_i Ci4*'.*+»/s,j+i .. • CA*>.«./s,,, ]. Note that H,i,i is different from the projector (10) used by 

the fault detection filter where E^i is not in the null space of the projector and now it is. By following the 

same derivation in Section 4.1, the sensor fault Hsi can be reconstructed from the projected residual H^i^ir 

by using 

|-rfc«+P.i.i+P,i,2+2/   _ X  .   \ 

^^*^'^ = a^,giC^W.       nP.MH-P.Mf,_^..)      95.x^aWrW (27) 
9si,i^st,i'-'^   /s»     lij=p.i_i+i l«   -^^s^j; 

if all the invariant zeros of {C, A; fsi) are in the left-half plane. The optimal q^i,! can be determined similarly 

as in Section 4.1. Note that (27) is not proper and a (k^i + l)-dimensional low-pass filter may be used to 

reduce the effect of the disturbance at the expense of introducing a delay in reconstructing the sensor fault. 

There is an alternative approach to reconstruct the sensor fault /ist. Define a projector Hsi,2 as 

HM,2 = / - KerH,<.2 [(KeTH,i,2fKeiH,i,2] ~' (KerF^.a)'' (28) 

whereKerH,i.2=Im[CA'=«iF„i CA^-^Faa ••• CA*-.'-F„,,. E^i F,2---F,,i_i F^.i+i • • • F^.,. CA'^'^U 

CA''"^fs2 • • • CA*^''ffs,q, ]. Then, the sensor fault ^^j can also be reconstructed from the projected residual 

HstflT by using 

'-'^'^=0-  6     E    ?m^L'"f ^.^^^-'^W (29) Qsi,2"si,2£'si   Sllj=l l« —2^s»,j; 

if all the invariant zeros of (C, A, f^i) are in the left-half plane. The optimal ^^4,2 can be determined 

similarly as in Section 4.1 except a finite frequency range of the designer's choice would be i^ed instead 

of the frequency range from —00 to 00 because the transfer matrix from figi to q^^ ^HgifiT is not strictly 

proper. Note that (29) is proper. The reconstructed sensor fault generated by (29) may be less sensitive to 

the disturbance than the one generated by (27) because the disturbance is not differentiated. Furthermore, 

since a low-pass filter is not required for (29), there is no delay in reconstructing the sensor fault. However, 

(29) m only stable in the sense of Lyapunov, but not asymptotically stable. The effect of the disturbance 

may accumulate over time. 

12 



Remark 3.   Consider a linear time-inmriant system that is observable with all sensors, but unobservable 

without one of the sensors. 

X2 

V 

All     0 

•A21    -A22 

Cxi 

X2 

Xi 
+ 

Bi 

X2 B2 

Xl 

X2 

This system is unobservable without the sensor that measures ajg.   For the fault in this sensor, its fault 

directions are 

Es js  is 
0 0 

1 A22 

E, 

Then, the transfer matrix from the sensor fault to the residual is 

r{s)  _{s-A22)T^'Ms-z,,j) 
Ms) ir/j^f\s-Kj) 

Hence, the eigenvalue associated with the unobservable mode will become one of the poles of the fault recon- 

struction process. Therefore, for reconstructing a sensor fault, the system has to be detectable with respect to 

the other sensors. ^ 

5    Numerical Example 

Consider a linear time-invariant system with 

A = 

-4 1 2 -3 5   0 

2 -3 -5 0 2   0 

-3 2 -7 1 -4   0 

5-1       3-2      5   0 

-3   -5      1-4-8   0 

0      0      0      0      10 

B = 

2 

1 

-5 

3 

-4 

0 

C = 

10   0   0   0 0 

0   10   0   0 0 

0   0   10   0 0 

0   0   0   10 0 

0   0   0   0   0 1 

A fault detection filter is designed to detect and identify the faults in the actuator, second sensor and fifth 

sensor. Note that the fifth sensor can be considered as a position sensor because it measure the sixth state 

which is the integral of the fifth state and does not affect other states, ftom (4) and (5), the fault directions 
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are 

Fa = )   Esi = I     Es2 = /si    fi si 

0 1 

1 -3 

0 2 

0 -1 

0 -5 

0      0 

'      [ fs2    fs2 J — 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

L = 

By i^ing the design algorithm in [5], the fault detection filter gain is obtained as 

-21.4426 1.0000 13.2130 23.9835 0.0000 

-6.9663 -0.5000 -0.1685 12.1966 0.0000 

11.2900 2.0000 -9.4501 -15.6101 -0.0000 

-14.8214 -1.0000 13.1070 26.3927 0.0000 

16.2212 -5.0000 -8.1061 -27.9910 -0.0000 

-4.3015 0.0000 2.5077 5.7139 3.5000 

The eigenvalue associated with Fa is -5. The eigenvalues associated with f^i and f^i are -2.5 and -3, 

respectively. The eigenvalue associated with fs2 is —3.5. 

To evaluate the performance of the fault detection filter, an actuator fault and two sensor faults are 

imposed on the system separately. The actuator fault simulates a stuck actuator. In Figure 2, the top left 

figure shows the control command. The middle left figure shows the actuator fault Ha which occurs at sixth 

second. The bottom left figure shows the control input applied to the system, which is the sum of the control 

command and the actuator fault. It shows that the actuator is stuck at 1 after sixth second regardless of the 

control command. The sensor faults simulate the bias developed in the sensoiB. In Figures 3 and 4, the top 

left figures show the second sensor fault fi^i and the fifth sensor fault (1^2 which start at the fourth second 

and end at the twelfth second, respectively. Figure 5 shows the time response of the norms of the three 

projected residuals generated by the fault detection filter (6) using projectore (10) in the prraence of the 

colored sensor noise where A = -lOOOJ, the power spectral density of w is 21, B^ = 0 and D^ = I. Each 

row shows the projected rraiduals when one of the faults occurs. Each column shows one of the projected 

residuals when the faults occur. Note that only the projected residual associated with the faulty instrument 

becomes large when the fault occurs. However, the projected residual associated the fifth sensor becomes 

small after a while even though the fifth sensor fault still exists. This is consistent with the discussion in 

Itemark 2. Therefore, the fault detection filter can detect and identify the actuator and second sensor faults, 

but not the fifth sensor fault. 
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To reconstruct these three faults, the relationship between the residual and the faults is obtained from 

(21). 

^W = JT5 ^^^/^^W + {jf^^ E., - ^ CU) M,,is) + ^ B,3M.aW 

FVom (22), the projector H^ used for reconstructing the actuator fault is obtained by annihilating [Esi Cf^i 

Esi]. FVom (23), the actuator fault can be reconstructed from 

with the optimal g^ = [0.9114 0 - 0.3903 0.1308 0] determined from (25). In Figure 2, the top middle 

igure shows the reconstructed actuator fault generated by (30), To reduce the effect of the sensor noise, a 

low-pass filter is added to (30). 

,   , , 20(s + 5) ,,.    , , 

The initial condition of the fault reconstruction proems is zero given that there is no fault initially. The 

middle center figure shows the reconstructed actuator fault generated by (31) which is close to the actual 

actuator fault shown in the middle left figure. By adding this reconstructed actuator fault to the control 

command, the control input applied to the system is reconstructed and shown in the bottom middle figure 

which is close to the actual control input shown in the bottom left figure. This mformation can be used to 

evaluate the condition of the actuator and in this case, the actuator found to be stuck. To demonstrate that 

the reconstructed actuator fault generated with an arbitrarily chosen qa is more sensitive to the sensor noise 

than the one generated with the qa derived fi-om solving (24), the top right figure shows the reconstructed 

actuator fault generated by (30) with q^ arbitrarily chosen as [0 0 0 1 0]. To reduce the effect of the 

seiwor noise, a low-pass filter with a slower pole is used. 

.  , . 6(s4-5) ^ -     , ^ 

The middle right figure shows the reconstructed actuator fault generated by (32) whose delay in recon- 

structing the actuator fault is worae than (31). This becomes clearer in the bottom right figure where the 

reconstructed control input is shown. 

R-om (26) and (28), two projectors used for reconstructing the second sensor fault are obtained by 

annihilating [CFa B^i ^sa] and \CFa Cfsi £^2], respectively. In Figure 3, the middle left and bottom 

left figures show the reconstructed second sensor faults generated by (27) with a low-pass filter and (29), 

respectively. Both are close to the actual sensor fault shown in the top left figure. However, the reconstructed 

sensor fault generated by (27) is more sensitive to the sensor noise and has a delay due to the low-pass filter. 

By subtracting the reconstructed sensor faults from the faulty measurement, the second measurements are 

15 
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Figure 2: Fault reconstruction for the actuator 

reconstructed and shown in the middle and bottom right figures which are close to the correct measurement 

shown in the top right figure. In the middle right figure, the spikes at fourth and twelfth second are due to 

the delay in reconstructing the sensor fault. 

For reconstructing the fifth sensor fault, the projector can only be obtained from (28) by annihilating 

[CFa Esi C/si]. In Figure 4, the bottom left figure shows the reconstructed sensor fault generated by 

(29) which is close to the actual sensor fault shown in the top left figure. The bottom right figure shows the 

reconstructed fifth measurement which is close to the correct measurement shown in the top right figure. 

Note that the fault reconstruction process can still generate the magnitude of the fifth sensor fault even 

after the projected residual becomes zero as shown in the bottom right figure of Figure 5. 

6    Conclusion 

The fault recoratruction process generates the magnitudes of sensor and actuator faults using the residual 

generated by the fault detection filter. An optimal fault reconstruction process is derived from solving a 

minimization problem by considering the disturbance. For the existence of the fault reconstruction process, 

the invariant zeros of the fault have to be in the left-half plane. B\irthermore, for reconstructing a sensor 

fault, the system has to be detectable with respect to the other sensors. Although the fault reconstruction 

process can also be derived numerically by using the Silverman's algorithm, it is not optimal in general and 

its existence conditions and analytical structure cannot be obtained. 
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Figure 5: Projected residuals generated by the fault detection filter 

Appendix 

If the first eigenvalue of A — LC associated with T^i is at the first invariant zero of (<7,A;F„j), i.e., 

Aot.i = ■Sat.i. (14) is still true except when j = fc = 1, (14) becomes Vat,tai,i = 0. If Vai,i = 0, (15) and 

(16) become 

ai,i    ai,iA„i,i    •••    ai,iAjf-i      ai,fc„,+2        ^Z'Ali 

1 Aai 2 \fcoi «'o4,l 8'oi,2 

1 ^ai,Sai 

^ai.X—Aai,2 2a^ 2—^Q*,2 

foi.l 
ai,Sat ^ai,l—^ai,t^( 'ai,3—>iai,l^ 

ai.lPa<,p„j 

2Eal  

and 

l(sI-A + LC)-^F^t = c[xi   a; 2,ia;2 
]r      ai,i 1 

L  s-A.i,i      s-A,i,2 s-X "•.'oi     J 

Then, by following the same derivation in Section 3.1, (18) can be derived with a pole-zero cancellation. If 

ai^ = 0, (15) and (16) become 

[ Foi    AFai   -••■    A''"Fai   Vai.l    '••    t'o».p„i J = [ ai,fc„i+2a;i    0(2,13:2    •••    asai,ia:s^ 

0       0 

1     A, at,2 
^sj,i 

1   A, <li,Sa 

S^}2 Zat.l—Aai,2 2ai,2—Aai^a 

A*"* 

'•Pfft 
•,Pai~^»».2 

iifl~Xai,S^^ Zai,2—Xsi.S^^ 
■'V«i 

^"<P<ii~^",ta 
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and 

C(sl-A + LC)-^Fai = c\ ai,k^.+2Xi   02,1^2    •••    a*„<,i^*,, 1 f 0   -^—    •••    -^  ] 

Then, by following the same derivation in Section 3.1, (18) can also be derived with a pole-zero cancellation. 

If Pai,i = 01,1 = 0, the derivation is similar. Note that the two derivations above can be extended to the 

case where multiple eigenvalues otA-LC associated with %i are at the invariant zeros of (C, A, Fai). 
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Robust multiple-fault detection filter 
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SUMMARY 

A new robust multiple-fault detection and identification algorithm is determined. Different from other 
algorithms which explicitly force the geometric structure by using eigenstructure assignment or geometric 
theory, this algorithm is derived from solving an optimization problem. The output error is divided into 
several subspaces. For each subspace, the transmission from one fault, denoted the associated target fault, 
is maximized while the transmission from other faults, denoted the associated nuisance fault, is minimized. 
Therefore, each projected residual of the robust multiple-fault detection filter is affected primarily by one 
fault and minimally by other faults. The transmission from process and sensor noises is also minimired so 
that the filter is robust with respect to these disturbances. It is shown that, in the limit where the weighting 
on each associated nuisan<» fault transmission goes to infinity, the filter recovers the geometric structure of 
the restricted diagonal detection filter of which the Beard-Jones detection filter and unknown input 
observer are special cases. Filter designs can be obtained for both time-invariant and time-varying systems. 
Copyright © 2002 John Wiley & Sons, Ltd. 

KEY WORDS: fault detection and identification; analytical redundancy; Beard-Jones detection filter; 
approximate fault detection filter; robust fault detection filter; time-varying system 

1. INTRODUCTION 

Any system tinder automatic control demands a high degree of reliability in order to operate 
properly. This requires a health monitoring system capable of detecting any plant, actuator 
and sensor faults as they oa;ur and identifying the faulty components. This process is called 
fault detection and identification. The most common approach to fault detection and 
identification is hardware redundancy which is the direct comparison of the outputs from 
identical componente. It requires very little computation. However, hardware redundancy is 
expensive and limited by space and weight. An alternative is analytical redtmdancy which uses 
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the modelled dynamic relationship between system inputs and measured system outputs to form 
a residual process. Nominally, the residual is non-zero only when a fault has occurred and is 
rero at other times. Therefore, no redundant components are needed. However, additional 
computation is required. 

A popular approach to analytical redundancy is the detection filter which was first introduced 
by Beard [1] and refined by Jones [2], It is also known as Beard-Jones detection (BJD) filter. A 
geometric interpretation and a spectral analysis of the BJD filter are given in References [3,4], 
respectively. The idea of the BJD filter is to place the reachable subspace of each fault into 
invariant subspaces which do not overlap each other. Then, when a non-zero residual is 
detected, a fault can be announced and identified by projecting the residual onto each of the 
invariant subspaces. In this way, multiple faults can be monitored in one filter, A design 
algorithm [5] unproves the robustness of the BJD filter by imposing the geometric structure to 
isolate the faults and using the design freedom remaining to boimd the process and sensor noise 
transmission. 

In Reference [3], a more general form of the detection filter, called restricted diagonal 
detection (HDD) filter, is given of which the BJD filter is a special case. Instead of 
placing each fault uito an invariant subspace like the BJD filter does, the RDD filter 
places all the other faults associated with each fault that needs to be detected into the 
unobservable subspace of a projected residual. Therefore, each projected residual is 
only sensitive to one fault, but not to the other faults. When every fault is detected, 
the RDD filter is equivalent to the BJD filter. However, some faults do not need to be 
detected, but only need to be blocked from the projected residuals. For example, certain 
process noise and plant certainty may be modelled as faults. By relaxing the constraint 
on detecting the faults that do not need to be detected, the RDD filter is more robust than the 
BJD filter [6], 

One related approach, unknown input observer [7-9], is another special case of the RDD filter 
when only one fault is detected. The faults are divided into two groups: a single target faidt and 
possibly several nuisan<« faults. The nuisance faults are placed in the imobservable subspace of 
the residual. Therefore, the residual is only sensitive to the target fault, but not to the nuisance 
faults. Although only one fault can be monitored in each unknown input observer, there are 
some benefits. For example, one gains additional flexibility which can be used to improve 
robustness and time-varying systems can be treated [10-12], 

In this paper, a new robust multiple-fault detection and identification algorithm is derived 
from solving an optimization problem. The output error is divided into several subspaces by 
using projectors. For each subspace, the projected output error variance due to one fault, 
denoted the associated target fault, is maximized and the projected output error variance due to 
other faults, denoted the associated nuisance fault, process noise, sensor noise and initial 
conditional error is minimized. The cost criterion is constructed such that each projected output 
error variance is included as a sum which produces approximately the geometric structure of the 
RDD filter. Therefore, each projected residual of the robust multiple-fault detection filter is 
affected primarily by one fault and minimally by other faults and is robust with respect to the 
disturbances. Note that [12], an approximate unknown input observer, is a special case of the 
filter when only one fault is detected. 

In the limit where the weighting on each projected output error variance due to the associated 
nuisance fault goes to infinity, it is shown that the filter places each associated nuisance fault 
into  the unobservable subspace of its associated projected  residual when  there is no 

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696 



MULTIPLE-FAULT DETECTION FILTER 677 

complementary subspace* for both time-invariant and time-varying systems, Tlierefore, the 
filter becomes equivalent to the RDD filter in the limit and extends the RDD filter to the time- 
varying case. Numerical examples show that the filter is an approximate RDD filter when it is 
not in the limit even if there exists the complementary subspace. These limiting results are 
important in ensuring that both fault detection and identification can occur. 

The robust multiple-fault detection filter is fundamentally different from other design 
algorithms for the RDD or BJD filter which explicitly force the geometric structure by using 
eigenstructure assignment [4,6] or geometric theory [3,5]. Rather, the filter is derived from 
solving an optimization problem and only in the limit, is the geometric structure of the RDD 
filter recovered and the faults are completely isolated. When it is not in the limit, the filter only 
isolates the faults within approximate unobservable subspaces. This new feature allows the filter 
to be potentially more robust because of the additional design freedom which allows different 
degrees of fault isolation. Furthermore, a mechanism that enhances the sensitivity of the 
projected residuals to their associated target faults is provided. Finally, the filter can be applied 
to time-varying systems. Although the filter has all these advantages, the process of deriving the 
filter gain requires the solution to a two-point boundary value problem which includes a set of 
Lyapunov equations. However, the filter gain computation can be done off-line so that the filter 
implementation is as straightforward as the RDD filter. 

The problem is formulated in Section 2 and its solution is derived in Section 3, In Section 4, 
the filter is determined in the limit when there is no complementary subspace. In Section 5, the 
projectors used to divide the output error are derived from solving the optimization problem. In 
Section 6, numerical examples are given. 

2. PROBLEM FORMULATION 

Consider a linear, time-varying, uniformly observable system 

X = Ax + B„u + By,w (la) 

y = Cx + v (lb) 

where « is the control input, y is the measurement, w is the process noise and v is the sensor 
noise. Following the development in Referents [1,4,10], any plant, actuator and sensor faults 
can be modelled as additive terms in the state equation (la). Therefore, a linear system with q 
faults can be modelled by 

x = Ax + B„u + B„w + J^ F,ni (2a) 
1=1 

y=Cx + v (2b) 

The fault magnitudes /i, are unknown ind arbitrary functions of time that are zero when there is 
no fault. The fault directions Ft are maps that are a priori known. Assume Fi are monic so that 
Hi¥^0 imply FiHi^^O. 

*The union of the invariant subspace of each fault fills the entire state space leaving no remaining subspace, the 
complementary subspace. 

Copyright © 2TO2 John Wiley & Sons, Ltd. Ira. J. Robust Nonlinear Control 2002; 12:675-696 
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If the first s faults need to be detected where j<f, the objective of the robust multiple-fault 
detection filter problem is to find a filter gain L for the linear observer 

x = Ax + BuU + Uy - Cx) (3) 

and projectors Hi--Hs which operate on the residual 

r = y-Cx (4) 

such that each projected residual ^r is affected primarily by its associated target fault /i, and 
minunally by its associated nuisance fault /i, = [^i • • • Hi-\ /it+i • ■ • Hgf, process noise w, sensor 
noise v and initial condition error x(ro) - x(to). This approximates the RDD filter problem. Even 
though the last q-s faults are not detected, they are blocked from the s projected residuals used 
for detecting the firet s faults. By relaxing the constraint on detecting the last q-s faults, the 
robustness of the filter is improved [6]. When s = q, every fault is detected and this approximates 
the BID filter problem. When s = 1, only one fault is detected and this approximates the 
unknown input observer problem. 

By using (2) and (3), the dynamic equation of the error, e = x - x, is 

e = iA -£C)e + ^ Ftfii + B„w-Lv 

Then, the error can be written as 

eii) = #(r, %)e(%) + / ^(t,T)( J3 ^-ft + B^^ -Lv)dt (5) 

subject to 

mt,to) = iA-LC)9(t,tol    #(%%) = / (6) dt 
The residual (4) can be written as 

r=Ce + v 

To formulate the robust multiple-fault detection filter problem, it is assumed that /*,••• ^ , w 
and V are zero mean, white Gaussian noise with power spectral density of gi • • • Q^, Q„ and F, 
respectively, and the initial state xito) is a random vector with variance of Po- It is also assimied 
that Hi'--fi^,w and v are uncorrelated with each other and with xito). Now a cost criterion is 
needed for deriving L and Hf- Hs. If the cost criterion is associated with the projected residual 
^iCe + «), it is unusable from the statistical viewpoint since the variance of the projected 
residual generates a 5-function due to the sensor noise. Therefore, the cost criterion will be 
associated with the projected output error ^Ce. In order to determine the cost criterion, define 

hi(t)=A,C f 9it,t)F,HidT (7a) 

m = mc f <b(t,x)mdx (7b) 

m= mc I   #(/,T)(B^V ^(f,*o)c(%)+ /   ^(t,x)iB^w-Lv)dt (7c) 

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696 
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where F,- = [Fi • • • i^_i Fj+i • • • Fg]. From (5), E^hi(t)hi(tf] represents the transmission from fij 
to HiCe, ^hi(t)hiitf] represents the transmission from ftj to ^Ce and E[hi{t)hiiff] represents the 
transmission from w, v and e(to) to H,Ce where £[•] is the expectation operator. Note that the 
power spectral density of/i, is g, = diag(gi • • • g,_i g,+i • • • Qg) and e(%) is a zero mean random 
vector with variance of PQ if x(to) = F[x(%)]. 

Therefore, the robust multiple-fault detection filter problem is to find the filter gain L and 
projectors H\'-Hs which minimize the cost criterion 

J=i^[ A E ^mmkitn+mimtfi - mm-w^l I d^      (8) 
where t\ is the final time and j\---fs are positive scalars. Making Ji---Js small places large 
weightings on reducing the associated nuisance fault transmissions. The summation is used to 
sum the s projected output error variances for detecting the s faults. The trace operator forms a 
scalar cost criterion of the matrix output error variance. Note that the power spectral densities 
Qi'Qq are considered as design parameters. Since no assumption is made on the fault 
magnitudes, their white noise representation is a convenience. For each projected output error, 
Qi and (l/y.OQ,- represent the weightings on the associated target and nuisance fault 
transmissions, respectively. When g,- is larger, the transmission from ju, is larger. This provides 
a mechanism to enhance the sensitivity of the projected residuals to their associated target faults. 
When (l/y,)0,- is larger, the transmission from fif is smaller. However, the power spectral 
densities gw and F, and the variance Po can have physical values. When 0^, V and Fo are larger, 
the transmission from the process noise, sensor noise and initial condition error is smaller, 
respectively. 

Since the effect of the process and sensor noises on the residual is explicitly minimized, the 
filter is robust with respect to these disturbances. Certain types of model uncertainties can also 
be modelled as additive noises [9,13]. Therefore, the filter can be made robust to these model 
uncertainties. In Section 4, it is shown that the filter recovers the geometric structure of the 
RDD filter in the limit as y, -♦ 0, i = 1 • • • s, and the faults are completely isolated. When it is not 
in the limit, the filter is an approximate RDD filter and only isolates the faults within 
approximate unobservable subspaws. This new feature allows the filter to be potentially more 
robust because of the additional design freedom which allows different degrees of fault isolation. 

In Section 3, the robust multiple-fault detection filter problem is first solved with Hi--Hs 
defined a priori as the projectors used by the RDD filter [3], i.e. 

^:W-^<W,       Kcr Hi ^Ci-j,    Hi = I-Cti\{CS'ifcB-^^{Cff-lf (9) 

where C#; = [C#i ••• C^_i C^+i ••• C^J, For time-invariant systems, C5;-= [CJ**'^-,! 
CA^'^fi^ • • • CA^'-n fi^p^] where fij is the jth column of F, 5,y is the smallest non-negative integer 
such that CA^'Jfij^Q and pi = dimi^-. For time-varying systems, the projector (9) is generalized 
with CS'i = [Cd,-,i_ay Cbi^^s,^ • • ■ Cbi^p^fi,^^ [10]. The vectors bij^s,j,J =^"- Pu are found from the 
iteration defined by the Goh transformation [14,15], 

bijj, = A(t)bijjk-i - 4y^-i    with 6,y,o = fij (10) 

5ij is the smallest non-negative integer such that Cbfj^^j^Q for 16 [%, t\\ More details about ^• 
and ^i can be found in Section 4.1. In Section 4.2, it is shown that (9) minimizes the cost 
criterion in the limit. Therefore, (9) is the optimal projector in the limit. In Section 5, the robust 
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multiple-fault detection filter problem is solved with Hi--Hs derived from solving the 
minimization problem. 

3. SOLUTION 

In this section, the minimization problem given by (8) is solved. By using (7), the cost criterion 
rewritten as 

X ^(t, tf dt C^4+ HiC^it, to)Pom.t, hfc^m dt 

is to be minimized with respect to L subject to (6), By adding the zero term 
^Kh-to)!ll tr{Ef^, H,C{<bit,t)Pdtmt,tf- <b(t,to)moMt,tof-g d/dtmt,x)Pi(t)mt,tf]dt} 
C Hi} dt to / and using (6), the minimization problem can be rewritten as 

riL-PiC'v-'fHi.^fitC^A, 

= nun 
L 

dt 

(11) 

subject to 

W, =(A-LC)Wi + m(A - LCf + (£ -i^C''F-')F(£ -PfC'V-^f, m{t<i) = 0        (12) 

fori = 1 • • -s where ^ >0 and 

P, =m + m^ - PiC^V-'CP> + i#,fi,Ff - FiQiFf + B^Q„Bl i>.(%) = P, (13) 

The term l/iti - *o) J^' HYfiM ^CPfC^H^ dt is dropped in (11) because it is fixed with respect 
to L. However, it will be brought back in Section 5 when the cost criterion is also minimized with 
respect to Hi • • • H,. Note that (13) is solved independently of £ and Hi-- H,. 

The variational Hamiltonian of the minimization problem is defined as 

s 

jr = J2 {HHiCWiC^Hi) + tr{Ki(A - LC)m + WdA - LCf 
1=1 

+ {L-PiC^V~^)V(L-PiC^V-^f\)) 
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where Kt is a continuously differentiable matrix Lagrange multiplier. The first-order necessary 
conditions [16] imply that the optimal solution for L and the dynamics of ^, are 

'dL 
J] [-ICWfKi + 2V(L* - PiC^V-^fKi] = 0 
»=i 

-I 

.£*=  Er, 
J=i 

Y,Ki(Pi+m 
1=1 

CTy-l 

and 

-Ki = g^ = KiiA -LC) + (A- LCfKi + C^HiC,    Kfyx) = 0 

(14) 

(15) 

where t=\--s. Therefore, the determination of the filter gain requires the solution to a two- 
point boimdary value problem which includes a set of Lyapunov equations (12) and (15), 
coupled by (14), An alternative approach is to solve (11) numerically by using the gradient 
method. However, the global minimum cannot be guaranteed because (11) may not be convex. 
Note that the filter gain computation can be done off-line so that the filter implementation is as 
straightforward as the RDD filter. Numerical examples are given in Section 6. 

For the infinite-time case, the minimization problem (11) becomes 

lim  min J = min tr ( "V^ HtCWtC^Ht 

subject to 

0 = (^ - LC)Wi + W^ - LCf + (£ - Pfi^V-^'WiL - P,C^V-Y 

for i = l-s where Wi'^O and 

0 = APt + PA^ - PC'V-^CP, + -F(QIFJ - FiQiFf + B^Q^Bl 
Vi 

The optimal solution for L can be derived similarly. 

/ ,      \ -1 r 

(16) 

(17) 

i*=  E^. 
J=i 

j2Kiip+m) 
1=1 

Tv-l C'V 

satisfying (17) and 

0 = K,(A -LC) + (A- LCfKi + C^HkC 

(18) 

(19) 

For the special case where s = 1 and ^, is detected, the minimization problem (11) becomes 

min-^ f tt HiC f <b(t,x)(L-PiC^r-^)V(L-PiC^V-Y9it,xfdtC^H]dt 
I-   h-to Jto        L       Jlo 

The optimal solution for L is 

par ■1 (20) 
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A Decentralized Fault Detection 
Filter^ 
In this paper, we introduce the decentralized fault detection filter, a structure that results 
from merging decentralized estimation theory with the game theoretic fault detection 
filter. A decentralized approach may be the ideal way to health monitor large-scale 
systems, since it decomposes the problem down into (potentially smaller) "local" prob- 
lems. These local results are then blended into a "global" result that describes the health 
of the entire system. The benefits of such an approach include added fault tolerance and 
easy scalability. An example given at the end of the paper demonstrates the use of this 
filter for a platoon of cars proposed for advanced vehicle control systems. 
[DOI: 10.1115/1.1367859] 

1   Introduction 

Observers are, in many ways, an ideal tool for fault detection 
and identification (FDI). Failures act as unexpected inputs into a 
system and, thus, drive the ciror residual of any observer to non- 
zero values. With careful selection of the observer gain, these 
fault-driven residuals can be made to have persistent and distinc- 
tive characteristics. In many cases, freedom exists to address other 
design issues, such as noise sensitivity and parameter robustness. 
For these reasons, the application of observers to the problem of 
fault detection and identification has long been an active area of 
research. 

There are two types of observers used for fault detection and 
identification. The first is known as die Beard-Jones Fault Detec- 
tion Filter [1,2]. "ITiis filter has a unique subspace structure in 
which the reachable subspaces of the modeled faults are restricted 
to lie within nonoverlapping invariant subspaces that can be made 
unobservable to a projection on the filter residual. Because of this, 
simultaneous detection and identification can be achieved. TTie 
failure is detected when the projection is nonzero. The failure is 
identified by the subspace corresponding the nonzero projection. 

The second type of FDI observer is known as the unknown 
input observer. In this observer, the set of modeled faults is di- 
vided into two groups: the faults to be detected and the faults that 
are to be ignored. The former is made distinguishable fl»m the 
latter by constructing an oulput flirough which the latter set is 
unobservable. Detection is then achieved when this ou^ut is non- 
zero and identification is trivial because we are only trying to 
detect one set of fmilts in flie iMssible presence of the other. The 
unknown input observer is clearly less capable Uian the Beard- 
Jones filter, but its relatively simple structure allows for easy ap- 
proximation by optimization mettiods [3,4]. 

As both of these approaches have become more refined, appli- 
cations have begun to be seen in the literatare [5,6]. Witfi the 
advent of applications, however, new issues related to implemen- 
tation have come to the forefiront. In this paper, we will look at 
some of die challenges inherent to detecting faults in large-scale 
systems. For such systems, a decentralized fault detection filter 
may be the logical approach to die problem. 

The decentralized fault detection filter is flie result of combin- 
ing the game theoretic fault detection filter developed by Chung 
and Speyer [4] wifli the decentralized filtering algoritfim intro- 
duced by Speyer [7] and extended by Willsky et al. [8]. It ap- 
proximates the actions of an unknown input observer and is 

'This work was sponsored by Air Force Office of Scientiflc Research Grant 
P49620-00-1-0154, NASA Goddard Space FUght Center NA05-8694 and California 
Department of Transportation Agiwmrait No. 65A0013, MOU315. 

Contributed by the Dynanuc Systems and Control Division for publication in the 
JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manussipt 
received by die Dynamic Systems and Control Division Kfcrch 16,1999; Associate 
Mitor: S. Fassois. 

formed by combining the estimates of several "local" estimators 
(each driven by independent measurement sets). For large-scale 
systems, it simplifies the health montoring problem by decompos- 
ing it down into a collection of smaller problems. For some sys- 
tems like a platoon of cars or a formation of airplanes, its decen- 
tralized structure reflects the actual physical structure of die 
system. A decentralized fault detection filter also introduces scal- 
ability for circumstances such as when a car joins the platoon or 
when an airplane drops out of formation for repaire. It also has 
built in fault tolerance in tiiat sensors can be checked and vali- 
dated prior to their measurements being blended into the global 
estimate [9]. 

The remainder of die paper is organized as follows. In Section 
2, the decentralized estimator is described. An essential insight 
revealed there is that observers tiiat take their gains fi-om Riccati 
solutions are much more suited for decentralized estimation than 
general Luenberger Observers diat do not. This leads us to a de- 
centralized fault detection filter based upon approximate unknown 
input observers. We describe these observers in Section 3. An 
overview of die decentralized fault detection filter is then given in 
Section 4. An essential part of fliis filter is how one obtains tiie 
global/local decomposition needed to develop the network. We 
suggest a technique based upon minimal realizations and demon- 
strate this in Section 5 in an example problem based around a two 
car platoon. 

2 Decentralized Estimation Theory and its Applica- 
tion to FDI 

2,1 TTie General Solution. In diis section, we will review 
the basic results of decentralized estimation theory. A detailed 
examination of this theory is given in [10]. We begin with a linear 
system driven by process disturbances, w, and sensor noise, v: 

x=Ax+Bw,    *(0),xe7£", 

y=Cx+v,    yen". 

(1) 

(2) 
It is desired to derive an estimate of x The standard approach is a 
full-order observer, 

i=Ajc-l-L(y-Cx),    *(0)=0, (3) 

which we will refer to as a centralized estimator. An alternative to 
this method is to derive the estimate with a decentralized estima- 
tor in which J is found by combining estimates based upon "lo- 
cal" models. 

xJ=A'x'+B'wJ,    x' EW,    0=1... N), 

yJ=Ey+vJ,    fe-Rf^,    (j=l...N). 

(4) 

(5) 

Together diese local models provide an alternate representation of 
the original system, which is referred to as the "global" system 
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for purposes of clarification. The vector, x, is likewise called the 
global state. The number of local systems, N, is bounded above by 
3ie number of measurements in the system, i.e., N^m. 

TTie globaWocal decomposition is really of only secondary im- 
portance. As Chung [10] argues, there are no real restrictions on 
how one forms the global and local models. TTie real key to the 
decentralized estimation algorithm is the relationship between the 
global set of measurements, y, and the N local sets, yK The two 
basic assumptions are that the local sets are simply segments of 
the global set. 

KT 

(6) 

and that the local sets can be described in terms of both the local 
state and the global state. In other words, y' can be given by (5) or 
by 

y'=CJx+vK    U=1...N). 

Equations (2), (6), and (7) imply that 

C= 

and that 

(7) 

(8) 

TTie decentralized estimation algorithm falls out when we at- 
tempt to estimate the global state by first generating estimates of 
the local systems (4) using the local measurement sets, y', and the 
local models, A^: 

xJ=AJxJ+U(yi-EW),    i%o)=0.    iJ=l...N).    (9) 

The objective then is to obtain the global state estimate, x, 
through some simple function of the local estimates. As it turns 
out, in the most general case, the global estimate is an afflne 
combination. 

(10) 

where W is a measurement-dependent variable propagated by 

hJ=^y+(^G'-6J-G'^J)x',    hJ(0)=0.       (11) 

The constituent matrices are defined as 
N 

TTie G' matrices are "blending matrices." They are so-called be- 
cause they act to blend the local estimates together to form the 
global estimate. They can also be shown [10] to directly connect 
the local and global gains via 

L=[G'...G^] 

L'     0 

0     L^ 

0      0 

(12) 

The interested reader can derive Bqs. (11) and (12) by differenti- 
ating (10) and substituting in the equations for the local estimators 

where appropriate. The derivation is completed through some al- 
gebraic manipulation and integration by parts (see [10] or [11]), 

Equation (12) looks harmless, but it turns out to be the key 
relationship in decentralized estimation. In fact, it is the necessary 
and sufficient condition for decentralized estimation [10,11]. An- 
other interesting fact is that (12) does not have a solution in the 
general case for the blending matrices, C, because of an insuffi- 
cient number of equations for all of the unknowns. There is, how- 
ever, one general class of estimator for which (12) is satisfied 
almost automatically. This class is comprised of estimators that 
take their gains from Riccati solutions, i.e., Kalman filters [7,8] or 
H°° filters [12]. In this case, the local gmns are found from 

L'=P'(EJf(V')-\ (13) 

where, in the case of the Kalman filter, the matrix P' is the solu- 
tion of the Riccati equation: 

pJ=AJpJ+pJ(AJf+ B'WUfi'f- P'(E>f(V')-^E'P', 

The matrices, V^ and W', are weightings that are related to the 
local disturbances, v' and w', that drive the local systems (4), (5). 
For the Kalman filter, it is assumed that v' and w' are white, 

Elw>(t)wi(rfl=W>8{t-T) 

Elv'(t)v'{rfl = V'S(t-T), 

and Gaussian. The initial condition, P|, is chosen by the analyst 
based upon his knowledge of the system. In the global system, the 
gain is 

^pr-r-ij-i L=PC^V 

where 

V= 

ryi 

0 

0 

0 

0 (14) 

The matrices, V', on the block diagonal of V are the local mea- 
surement noise weightings. In our example, however, we will 
show that there is some design flexibility in choosing the global 
wei^t. Specifically, one can choose scalar gains on tiie local 
wei^tings. 

V= 

«,¥' 0 ... 0 

0 UiV^ 0 0 
; 0 \ 

0 a^Vl 

(15) 

This added flexibility allows us to meet other design criteria fliat 
might arise in the problem. In our example in Section 5, we dem- 
onstrate how to use this design freedom to improve the response 
of our decentralized fault detection filter to the faults that we want 
to see. 

The matrix, P, is die solution to the global Riccati equation, 

P=AP+PA'^+BWB'^-PC'^VCP,    Pm=Po. 

TTie blending matrix solution is then 

GJ=P(Sif(ajPT'   j=l,....N, (16) 

where S^ is any matrix such that 

C'=E'S'. (17) 

One can, in fact, always take S^=(£^)*C' where (E^)^ is the 
pseudo-inverse of E' [8]. Note that the solutions for G> will al- 
ways exist for Riccati-based observers so long m P^ is invertible 
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or, equivalently, positive-definite. TTus will always be the case if 
the ttiples, (C',A',B'), are controllrttle and observable for each of 
the local systems. 

1,1 Implications for Detection Ffltets. Tlie analysis of the 
previous section implies that we will be able to form a decentral- 
ized fault detection filter in the general case only if we are able to 
find a Riccati-based observer that is equivalent to a Beard-Jones 
filter or unknown input observer. The most direct way to achieve 
this is to find a linear-quadratic optimization problem that is 
equivalent to the fault detection and identification problem. This is 
an analog of the famous inverse optimal control problem first 
posed by Kalman [13]. In [4], however, it is shown that the Beard- 
Jones filter gains do not correspond with those derived from 
linear-quadratic problems. Ati indirect way to get a Riccati-based 
observer is to pose a linear-quadratic optimization problem that 
closely mimics the fault detection problem. Such a problem was 
posed and solved in [4], and we will review the solution found 
there in the next section. 

3 The Approximate Fault Detection and Identification 
Problem 

3.1 Problem Formulation. Consider the system given by 
(1), (2) with the further assumption that the state matrices have 
sufficient smoothness to guarantee the existence of derivatives 
various order. Beard [14] showed that failures in the sensors and 
actuators, and unexpected changes in the plant dynamics can be 
modeled m additive signals. 

Let n be the dimension of the state-space. The »Xj>,. matrix, F,-, 
i=l'--q, is called a failure map and represents the directional 
characteristics of the ith fault. The p,- X1 vector, ^j, is the failure 
signal and represents tiie time dependence of the failure. It will 
always be assumed that each F, is monic, i.e., F,/Et,-^0 for /t,- 
#0. See [15,4] for further details on how to model failures. 
Throu^out this paper, we will refer to /iii as the "target fault" 
and the other faults. Hj, J=2---q, as the "nuisance faults." 
Without loss of generality, we can represent the entire set of nui- 
sance faults (and, if desired, the disturbance, w) with a single map, 
F2, and vector, ^2* 

X=Ax+Pifli + F2/l2. 

Suppose that it is desired to detect the occurrence of the failure, 
fii, in spite of the measurement noise, v, and the possible pres- 
ence of flie nuisance faults, fi2 • The Beard-Jones filter solves this 
problem by finding a gain, L, so tiiat a standard Luenberger Ob- 
server, 

x=A£+L(y-Cx), (19) 
will have an invariant subspace structure that restricts the influ- 
ence of fii and /I2 to separate and nonintersccting invariant sub- 
spaces. With a properly chosen projector, H, we can then project 
the filter residual, (y—Cx), onto the orthogonal complement of 
the invariant subspace containing /JL2 and get a signal. 

Z=Hiy-Cx), (20) 
such that 

z-0    when fii=0 {112 is arbitrary). (21) 

To be useful for FDI, t must also be such that 

z#0    when MI*0. (22) 

If we restrict ourselves to time-invariant systems, (22) will be 
equivalent to requiring that the transfer fimction matrix between 
Hiit) and z(r) to be left-invertible. Left-invertibility, however, is 
a severe restriction, and it has no analog for the general time- 
varying systems that we want to consider here, ftevious research- 

ers [15,16] have, in fact, only required that the mapping from 
Mi(*) to z(t) be input observable, i.e., z#0 for any /t, that is a 
step input. It can be argued [16] that z will be nonzero for "almost 
any" /i,, since fi^ is unlikely to remain in the kemal of the 
mapping to z for all time. 

We formulate the approximate detection filter design problem 
by requiring input observability and relaxing the requirement (21). 
Instead of (21), we require only that the transmission of the nui- 
sance fault be bounded above by a preset level, y>Q: 

llzll' 
Mp-r. (23) 

Equation (23) is identical to the disturbance attenuation problem 
from robust control theory. We refer to the solution to the ap- 
proximate detection filter problem as the game theoretic fault de- 
tection jUter. 

We complete our formulation of the disturbance attenuation 
problem for fault detection by constructing the projector, H, that 
determines the failure signal, z. For time-invariant systems, this 
projector is constructed to map the invariant subspace containing 
the range of F2 to zero [14,15], i.e., 

where 

H=I-CPUCPfCFT\CF)'' 

F=[Aft/,,.,.,A%/pJ. 

(24) 

(25) 

The vector /,-, i = 1 • • •|>2. is the ith column of P^, and the integer 
Pi is flie smallest natural number such fliat CA^'fii^O. Witii littie 
additional effort, this result can be extended to the time-varying 
case, 

H=i-cHmcPmfcHt)rHcHt)f.    tm 
The columns of the matrix, 

Ht)=lbf'it),...,b^/Kt)l (27) 

are constructed with the Goh Transformation [4]: 

*|W=/,(f), (28) 

fc|(0=A(f)*r'(t)-*|-'. (29) 

In the time-varying case, 0, is the smallest integer for which die 
interaction above leads to a vector fcf*(^) such that C(t)fc?*(t) 
¥=0 for all te[»o,i,]. It will be assumed that Ait), C(t), and 
F2(r) are such that fii exists. Since the state-space has dimension, 
n. Pi is such that 0=S A«» -1. 

Remark I, One of the advantages to the distuAance attenuation 
approach to designing FDI Observers is that the time-varying case 
can be handled as easily as the time-invariant case. This is an 
improvement over classic detection filter designs. 

We are now ready to discuss the conditions under which the 
solution to (23) will also generate an input observable mapping 
from fii to z. Tlie key requirement is that the system be output 
separable. TTiat is. Pi and F2 must be linearly independent and 
remain so when mapped to the output space by C and A. For 
time-invariant systems, the test for output separability is 

rank [CA*i/,,... .CA*(.,/,|,CA^./,.... ,CAPp^fp^l 

=Fi+P2- (30) 

As in (25), /,• is the Ith column of Fj, and Pf is the die smallest 
integer such that CAft/,#0. Similarly,/^, is the/th column of F,, 
and Sj is the smallest integer such that CA'iJj+Q. The integer 
sum, P1+P2, is the total number of columns in F] and F2, 

For time-varying systems, the output separability test becomes 

rank [C(f)Ff'(0. • ■ • ,C(t)f'Kt),C(t)bf%t)...., 
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Pi 
(31) 

where the vectors, by and EJ, are found from the iteration de- 
fined by (28) and (29). The initial vector, Bh is set equal to the jth 
column of F|, and bj is initialized as the ith column of F2 ■ 

The following proposition, given in [4], connects output sepa- 
rability to input observability and shows the importance of the 
monicity assumption: 
Theorem 2. Suppose that a given filter satisfies (23) and generates 
the failure signal z given by (20). If F| and F^ are output sepa- 
rable and F] is monic, then the mapping, iii{t)-^z{t), is input 
observable. 

3.2 A Game Theoretic Solution. We now turn our atten- 
tion to the disturbance attenuation problem implied by (23). We 
begin by defining a disturbance attenuation function. 

Dan 
Jtn 

iHCix-mldt 
(32) 

m2lU+M\U}dt+Mto) -t IP *ollp„ 

D„f is simply a ratio of the outputs over the disturbances. Equa- 
tion (32) is patterned roughly after (23). We have added the sensor 
noise, v, and the initial error, x(%)—JEQ, to the set of disturbance 
signals to inject tradeoffs for noise rejection and settling time into 
the problem. M, V, Q, and PQ are weighting matrices. Note that 
we do not include the target fault, /ii, at this stage of the design 
problem, since we are now focusing on nuisance blocking. Our 
only concern with fii is that it be visible at the ou^ut, which is 
what Theorem 2 guarantees. The disturbance attenuation problem 
is to find the estimate, x, so that for all /t2, vsL2[ti,t2% and 
xOoisn", 

D a/^r- 
The positive real number, y, is called the disturbance attenuation 
bound. (C,A) will always be assumed to be an observable pair. 

To solve this problem, we convert (32) into a cost function, 

J=l'\lHC(x-mQ-Y(U2f„-i+\b-Cx\\l-^)-idt 
Jii, 

-Hto)-xotL, (33) 

where we have used (2) to rewrite the measurement noise term. 
Note that we have also rewritten the initial error weighting, defin- 
ing IIo^yFo • The disturbance attenuation problem is then solved 
via the differential game, 

(34) min max max max/=s 0, 

subject to 

X=Ax+F2H2' 

y=Cx+v. (35) 

Those familiar with linear-quadratic optimization, will recognize 
the solution of the differential game [4] to be a Luenberger Ob- 
server, 

i=Aje+yn-'c''F~'(y-«)>   XM^xo,      (36) 
whose gain is taken from the solution to a Riccati equation, 

1 

y 

+C''(HQH-YV-')C n(to)=no.      (37) 
In many cases, it is desired to extend finite-time solutions of game 
theoretic problems to the steady-state condition. Whenever it is 

-n=A'^+nA+-UFiMFln 

possible to find such a solution, the optimal estimator will be 
given by (36) with II l>eing the solution of the algebraic Riccati 
equation, 

0=A^n + nA+-nF2MFln+C'^(HQH-yV-^)C. 

(38) 
However, unlike linear quadratic optimal control problems, there 
are no conditions which guarantee the existence of a unique, non- 
negative definite, stabilizing solution to the steady-state Riccati 
equation, except in the special case where A is asymptotically 
stable [17]. 

4 The Decentralized Fault Detection Filter 

Given the results of the previous two sections, we now propose 
a decentralized fault detection filtering algorithm. The essential 
idea is to implement the Riccati-based game theoretic fault detec- 
tion filter as a decentralized estimator. An overview of the proce- 
dure is as follows: 

1 Identify the sensors and actuators which must be monitored 
at the global level, i.e., define the target faults for the global filter. 

2 Identify the faults that should be included in the global nui- 
sance set. The remaining faults should be monitored at the local 
levels. 

3 Derive global and local models for the system including fail- 
ure maps. Chung [4] contains a brief discussion about this pro- 
cess. We will demonstrate one method in which the local models 
are derived from the global model via a minimum realization. 

4 Design game theoretic fault detection flltere for the local and 
global systems. Solve the corresponding Riccati equations and 
store the solutions for later use. 

5 Determine the blending solutions & from Eq. (16). 
6 ftopagate the local estimates, Jc-', and vectors, h', and then 

use the decentralized estimation algorithm (10) to derive a global 
estimate, *. 

7 Determine the global failure signal from (y — Cx) where y is 
the total measurement set, C is the global measurement matrix, 
and X is the global fault detection filter ratimate just derived. 

Remark 3. Minimum realizations leave only those states that are 
both observable and controllable. Our use of minimum realiza- 
tions in step #3 extracte the local models from the global model by 
pulling out only those states (or combinations of states) that are 
observable thtou^ the local measurements, yK and driven by the 
failures chosen to be included in the local model. Determining a 
compatible and consistent local/global decomposition is a key is- 
sue in decentralized estimation and control. The use of minimum 
realizations that we suggest here <p m a. logical and theoretical 
rigorous approach to this problem. 

5 Range Sensor Fault Detection in a Platoon of Care 

5.1 Problem Statement. We will now examine the utility 
of the decentralized approach to FDI by working through an ex- 
ample. The problem that we will look at involves the detection of 
failures within a system of two cars traveling as a platoon (see 
Fig. 1), The cars are controlled to maintain a uniform speed and 
constant separation. The platoon is the central component of au- 
tomated highway schemes in which groups of cars line up single 
file and travel as a unit. The objective is to eliminate the backup 
caused by the interaction of individual vehicles maneuvering 
across highway lanes [18,19]. The viability of the platooning 
scheme, however, will depend on many factors, not the least of 
which are reliability and safety. 

The FDI schemes ttiat we have examined to this point are ca- 
pable of monitoring individual cars, but may not be ideal for 
monitoring elements that ded with the interactions lietween cars. 
For example, to maintain uniform speed Ihroughout the platoon 
and to keep the spacing between the cars constant, additional sen- 
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Corn Carts 

Fig. 1   Two-car platoon with range sensor 

sors will be needed to measure the relative speed and the relative 
distance, or "range." between the care. In order to detect a failure 
in the range sensor using analytical redundancy, however, it is 
necessary to have a dynamical relationship between the range sen- 
sor and other sensors on the vehicles. Range, however, involves 
the dynamics of both of the cars and so would require a higher- 
order model for its detection filter. 

While this is not necessarily prohibitive, it does not make use of 
the many different state estimates that are already being propa- 
gated throughout the platoon. The sensors on each of the cars, for 
instance, will be monitored by detection filters, and it is more than 
likely that a state estimate would also be generated by the ve- 
hicles' control loops. Given these pre-existing estimates, it seems 
logical to make use of the decentralized estimation algorithm to 
carry out range sensor fault detection. 

The presentation of the example is as follows. In the next sub- 
section, we present the problem and the model of a single car 
derived in [18]. We then manipulate this model into a two car 
platoon model and define the target and nuisance faults. Referring 
back to the steps listed in Section 4, these are steps #1, Wl, and 
part of #3. In Section 5.3, we complete step #3 by deriving the 

local models from the global one. In Section 5.4, we design game 
theoretic filters for the local and global problems and calculate the 
blending matrices (steps #4 and #5). We also implement the de- 
centralized estimator equations (step #6) and monitor the gener- 
ated residual for indications of a Range sensor failure (step #7). 

5.3 System Dynamics and Failure Modeling. Our ex- 
ample starts with the car model used in [18]. In this model, the 
nonlinear, six degree-of-freedom dynamics of a representative au- 
tomobile are linearized about a straight, level path at a speed of 25 
meters/s (roughly 56 miles per hour). The linearized equations arc 
found to decouple nicely into lateral and longitudinal dynamics, 
much like an airplane. Moreover, the linearized equations can be 
further reduced by eliminating "fast modes" and actuator states. 
For simplicity, we will only use the longitudinal dynamics which 
we represent as 

X=A'-X, 

y=0'x, 

where the superscript "L" stands for "longitudinal." The vehicle 
states are 

(39) 

m„ engine air mass (kg) 
«e engine speed (rad/s) 
Vx long. velocity(m/s) 

x= Vz < vertical velocity (m/s) 
z vertical position (m) 
q pitch rate (rad/s) 
e\ pitch (rad) 

d are propagated by the state matrix. 

A'= 

-22.56 -0.11683 0 0 0 0 0 
307.03 -35.412 397.43 -238.06 -2698 -3753 -331.14 

0 0.071298 -0.81773 0.59338 6.7786 16.807 1.5162 
0 -0.0019628 0.022119 -3.5646 -40.421 -9.0765 -0.81415 
0 0 0 1 0 0 0 
0 0 0 0 0 0 1 
0 -0.019628 0.22118 -0.61304 -7.1619 -39.926 -3.6293 

(40) 

The measurements arc 

with the corresponding measurement matrix. 

engine air mass (kg) 
engine speed (rad/s) 
long. Moderation (m/s^) 
vertical acceleration (m/s^ 
pitch rate (rad/s) 
front symmertric wheel speed (rad/s) 
rear symmertric wheel speed (rad/s) 

(41) 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0.0713 -0.8177 0.5934 6.7786 16.8068 1.5162 
0 -0.0020 0.0221 -3.5646 -40.4210 -9.0765 -0.8141 
0 0 0 0 0 0 1 
0 0 7.1220 -4.5806 -51.9152 58.8718 5.1944 
0 0.0888 5.9738 -3.5782 -40.5542 -56.4109 -4.9773 

(42) 
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The rear and front symmetric wheel speeds are states that were 
eliminated when the fast modes were factored out of the linearized 
system. 

S3 Global and Local Decomposition, In order to build a 
detection filter for the range sensor, we need to use (39)-(42) to 
build state space models for the platoon, 

and the two individual cars. 

We will build up our models with the following steps: 

1 Using (39)-(42), we will derive the global state matrices, k 
andC. 

2 Using the modelling techniques described in [15] and [4], we 
will determine the failure maps, F,-. 

3 We will then obtain the local state matrices. A', E\ and F',, 
from the minimum realization of the triples (C',A,F2) and 
(C^A.F2). 

The obvious way to get the global matrices, A and C, is to form 
block diagonal composite matrices with A*" and C' repeated on 
the diagonal, i.e.. 

A' = 
0 

0 

A' 
C' = 

0 

0 

This, however, is not sufficient, since there is no way to describe 
the range, R, between the two vehicles with the given states (39). 
Range is the relative distance between the cars, 

where x' is the longitudinal displacement of car i. Displacement, 
however, is not a state of the vehicle (39). We must, therefore, add 
a range state to the platoon dynamics, using the equation, 

R-vl-vl 

The end result is that the platoon will be a fifteen-state system. 

/„«\ 

,= ' 

\ 

engine air mass (kg)—Caril 
engine speed (rad/s)—Car#l 
long, velocity (m/s)—Cai#l 
vertical velocity (m/s)—Caril 
vertical position (m)—Caril 
pitch rate (rad/s)—Car#l 
pitch (rad)—Car#l 
engine air mass (kg)—Car#2 
engine speed (rad/s)—Car#2 
long, velocity (m/s)—Car#2 
vertical velocity (m/s)—Car#2 
vertical position(m)-Car#2 
pitch rate (rad/s)—Car#2 
pitch (rad)—Car#2 
Range (m). 

A = 

'A'-      0      0 

0      A^     0 

.El    -F,    0 

F|=[00 10000]. 

The mcMurement matrix is 

fc'-      0 

(43) 

C= 

0     1 

C'1 
(44) 

where C' and C^ can be inferred from (44). Finally, the local 
measurement sets are 

engine air mass (kg)—Carfl 
engine speed (rad/s)—Car#l 
long, acceleration (m/s^)—Car#l 
vertial acceleration (m/s^)—Car#l 
pitch rate (rad/s)—Car#l 
front symmertric wheel speed (rad/s)—Caifl 
rear symmetric wheel speed (rad/s)—Car#l. 

and 

ml 

f   2^ 

y^=< 

R 

engine air mass (kg)—Car#2 
engine speed (rad/s)—Cai#2 
long, acceleration (m/s^)—Car#2 
vcitial acceleration (m/s^)—Car#2 
pitch rate (rad/s)—Cai#2 
front symmertric wheel speed (rad/s)—Cai#2 
rear symmetric wheels peed (rad/s)—Car#2 
range (m). 

The corresponding state matrix is 

Our ultimate objective is to design a filter that will detect a 
range sensor fault in the presence of potential failures in the other 
sensors. In an actual health monitoring system, we would design 
the global filter to block out all of the nuisance faults that are 
output separable from the range sensor fault and then rely upon 
the local filters to monitor the remaining faults. Given the size of 
our exffljiple, however, the full analysis required to do a detailed 
design would clutter our presentation. We will, therefore, limit 
ourselves to constructing only one locM filter ^r car and will 
choose simple nuisance sets at both the global and local levels. 

For this example, we choose to monitor the front symmetric 
wheel speed sensor at the local level. The nuisance set is then 
chosen to be the engine air mass sensor and the vertical acceler- 
ometer. At the global level, the range sensor has already been 
designated as the target fault. We, therefore, complete tiie problem 
definition by choosing the engine speed sensor and longitudinal 
accelerometer as die global nuisance set. There is no particular 
significance attached to any of our choices for the nuisance and 
target sets, aside from the choice of the range sensor as the global 
target fault. 

Following standard modeling techniques [15,4], we construct 
the two engine speed sensor failure maps F„i and F„J. To save 
space we do not list these matrices out explicitly. The interested 
reader can refer to [11]. To complete the problem, we also need to 
construct maps for the accelerometer failures, F^i and F^a, and 
the range sensor, F^. For the local filters, failure maps need to be 
consttucted for the airmass sensors, F„i and F„a, vertical accel- 
erometers, F^i and F^a, and front wheel speed sensors, F51 and 

z t f 
Fgi. A quick application of (30) will show that all of our failure 
sets are output separable. 
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We are now in position to generate the local state equations. TTie local dynamics for car #1 come from the minimum realization of 
(C',A,[F„iFji]). TTie corresponding matrices are 

ii = 

ri = 

-0.087694 0.0038094 -0.12133 -0.010701  3.9941 ♦2,617 1.2879 
0.032194 1.6765 57.123   7,2346    26.27   -665,78 496.6 
O.OOMS -0.021736 -22.56   0.11478   -0.0001  0.00008 -0,00005 

-0.077512 7.7689 -301.66  -38.647   -137.16   3612 -2816,7 
-0.096212 -0.073026 2.498    0.2312   0.89067  -19.054 9.0737 
-0.94943 -0.26102 -0.20407 -0,067025  -0,41229 -2.4689 0,16425 
-0.27186 0.092418 0.12024   0.19024  -0,010912 -1.302 -1,434 

0 0 1    0 0      0 0 
-0.0)04 0.18605 0  -0.98251 0.008136  -0.000665 0.000392 
0.0043561 -0.014182  0  -0.090334 I  -0.2118   11.266 -14,31 

0.00015951 -0.00067636 0 -0.0048006  -4.0642  -41.318 -2.4264 
-0.00014266 -0.97872  0  -0.18537 0.0016064  0.024547 -0.084511 

-0.00030256 0.0016942  0  0.0069288 1.4478   -34.102 -71.377 
0.0009564 -0.0038718 0  -0.019192  2.1041   -55.207 42.987 

"o - -0.12133 ■ 7.9031  -1.6879" 

0 57,1230 -0.0007 -0.0213 

1  - -22.5605 0     0 

0 - -301.6586 -0,M48 -0,0057 
a 

0 

0 

0 

2.4980 

-0.2041 

0.12024 

I 

-0,1760 -0,7911 

-0.0068 -7.4136 

-0,0003 -2.1388 

TTie model for Car #2 is similarly found by obtaining the minimum realization of (C^,A,[F„2F^2]). The corresponding mattices are 

E^= 

-0.26387 -0,27372 0,97419 -0.040683 0 0 0 0 
0.28256 0.2607 0,042752 1.0237 0 0 0 0 
-12,546 -12.054 -1,4539 -0,79488 -0,002510 0.0001643 0.000136 0.03416 
-28.279 -27,514 -2,1059 -3,0468 0.004805 8,129 6,711 -0,06539 
195,07 193.92 -2,3745 38,898 -0.19848 -152.87 -126.21 2,7044 
3,8593 4,598 0,3571 0.5193 -0,OT0005 -21,332 -18,419 0.00006 
-4,0915 -4,8456 -0.37617 -0.5471 0,00003 22,827 17,824 -0.00042 
-2654.8 -2639,1 32,315 -529.37 -304.44 2080,5 1717.5 -57,774 

0 0 0 0 0.9973 0 0 0,0733 ■ 
0 0 0 0 0,0733 0 0 -0.9973 

-12.008 -11.76 -0,5409 -1.6668 0,00522 5,2402 4,3261 -0,0711 
5,9034 6,9535 0.5329 0,7915 -0,00014 -31.362 -25.727 0.00196 
-0.0112 0,01132 -0,7316 -0.6816 0 -0,00195 -0,00161 0 
-43.291 -39,922 -8.6999 1.9601 0 -40,162 -33.156 0 
moil 39.775 -0,4870 7.9783 0.0065 -31.356 -25,886 -0,08855 
0.69369 -0,71973    -0.01465    -0.007574 -0,01755    -0,01449 

Journal of Dynamic Systems, Measurement, and Control JUNE2001, Vol, 123 / 243 



•   0 0 

0 0 

0 0 

"a 

0 

0.9973 

0 

0.0002 ■ 4= 
0 0 

0 0 

. 0.0733 -307.8575, 

0 0 

0 0 

0 0 

0 0 

0 0 

5.0327 -4.9282 

>.0961 -6.2254 

0 0 

With all of these system matrices in place, we can now form the residual projectors, H, needed generate the failure signal, z. In the 
global filter, we define 

F=[F„iF^iF„2F^2]. 

In the local filters, we define 

F'HF'^Fy]    1=1.2 
a      z 

The projectors, H and H', are then found by applying (24). Again, we do not show either of these matrices to save space. 

5.4 Decentralized Fault Detection Filter Design, We will first design filters for the local systems. As with all Riccati-based 
filters, the central step in the process is in obtaining a solution to the appropriate Riccati equation. For simplicity, we will use the 
steady-state version. Typically, one iterates on the design by trying various combinations of weightings until a Riccati solution is found 
that leads to a filter that gives the best tradeoff between target fault transmission and nuisance fault attenuation. For this example, it was 
found that choosing 

e'=/7,    y,=0.18 

as the weightings and attenuation bound leads to a filter gain. 
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Fig. 2   Platoon example—signal transmission In local detection filter on car # 1 
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Fig, 3   Platoon example—signal transmission In local detection Alter on car # 2 

RMkfual SIgnalfcr Ta^et F«jR h^srt 

0.6 

i2 

15 a 2.5 3 3.S 
Tkmfsecs) 

ftosidud Signal fcr Nuisance Fai« hprt 

4.5 

1 - 

0.8- 

0.8- 

04 

05- 

-05 
OS iS 2 ZS 3 3.S 4.S 

Fig, 4   Platoon example—failure signal response of the decentralized fault detec- 
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-0.0060     0.0007 0.0112 0.1432 -0.0)04 -0.1021 -0.0683' 

-0.0973     1.3243 0.0971 -0.0185 -0.0000 -0.0205 0.1017 

0.0622     -0.5231 -0.0386 0.0079 0.0000 0.0099 -0.0388 

0.5139      -6.9936 -0.5124 0.0959 0.0000       0.1058 -0.5385 

-0.0041     0.0581 0.0057 -0.0141 0.0000 -0.0118 -0.0042 

0.0028 0.0151 -0.0910 -0.0000 -0.1169 -0.0915 
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for car #1. The transmission properties of the filter are depicted in Fig. 2. The minimum separation over frequency is only about 10 dB, 
but the filter h^ particularly good separation in the high frequency range. For car #2, the same weightings, adjusted for the different 
dimensions of the car #2 dynamics, 

M^=10X/4,    F*=diag[l 1 101 1 1 1 1], 

Q^=h,    72=0.18, 

leads to 

aOMX 

-0.0001 -0.0000 0.00)0 -0.0000 -0.0000 -0.0003 -0.0002 1.1715 

0.0001 0.0000 -0.0000 0.0000 0.0000 0.0003 0.0002 -1.2154 

-0.0000 -0.0000 0.0000 -0.OX)0 -0.0000 0.0000 0.0001 -0.0247 

-O.TOOO 0.0001 0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0128 

0.0)81 -0.0010 -O.OOX) 0.0)09 0.0000 0.0020 0.0012 -0.0002 

0.0027 0.0005 0.0003 -0.0542 0.0001 -0.0106 -0.0146 -0.0306 

-0.0)34 0.0003 0.0005 0.0182 -0.0002 -0.0482 -0.0299 -0.0233 

0.1650 -2.2230 -0.0162 0.0269 0.0000 0.0286 -0.1752 0 

The transmission properties for this particular filter are depicted in 
Fig. 3. The reader should notice the similarities in the level of 
performance between fliis filter and the one designed for car #1. 

Finally, for the global system, a fault detection filter for range 
sensor healfli monitoring in the platoon is found by solving the 
corresponding Riccati equation with the weightings: 

yF-'=diag(1.100,100,l.l,l.l.l.ia),100,l,l,l,l,l).    fi=/i5. 

M=100X/g,        y=0.18. 

For the global system, however, we are not interested in finding a 
gain for a global filter, but in obtaining a global Riccati solution, 
n, for use in determining the blending matrices. 

G'=r] 
Yj 

The connecting matrices, S-', are taken to be the pseudo-inverses 
of E'. As the dimensions of these mattices are quite large,^ we 
cannot list them in this paper. 

Note that we use our design freedom in V. The reason for this 
is that if we had not used this freedom and chosen 

F= 
0 

0 

the response of the filter to the target fault input would have been 
unsatisfactory. In Fig. 4, we show this response, which is con- 
structed by implementing our decenttalized estimator, (10). In this 
figure, the time history of the fidlure signal, z, is shown when the 
system is driven by a fault in the range sensor and a fault in the 
longitudinal accclerometer. The range sensor is the target fault 
and as the corresponding plot in Fig. 4 shows, this fault is seen 
almost inmiediately in the residual. Better yet, its presence is seen 
over a sustained period. Had we not adjusted the weightings in V, 
the time constants in our decentralized filter would have been too 
small resulting in a target fault response that dies away too 
quickly. 

The reader should note that the responses seen in Fig. 4 can be 
understood to be the result of the direct feedthrough of the fault 
into z since a range fault goes directly to the global measurement 
vector, y. The longitudinal accclerometer is the nuisance fault and 
we see in the corresponding plot that this failure is also fed 
through to the residual but at a much smaller magnitude. A rea- 

^ is I5X15 for instance 

sonably well-designed redundancy management system should, 
thus, be able to detect the range sensor fault no matter the behav- 
ior of the longitudinal accclerometer. 

6   Conclusions 

In this paper, we have introduced a decentralized fault detection 
filter fiiat provides an alternative way to monitor large-scale sys- 
tems for faults. The resulting filter has additional fault tolerance, 
because it can check the health of its contituent sensors prior to 
deriving the top level estimate, and it is easily scalable. We have 
also introduced a logical and theoretically rigorous method for 
decomposing large, global systems into smaller, local ones using 
minimum realizations. An example based upon the linearization 
of a nonlinear cat model is given to illustrate our results. 
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Target Association Using Detection Methods 

Jonathan D. Wolfe* and Jason L. Speyer^ 
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A readual-based sdieme is presentwl tor solving the radar trock-to-track assodation problem using bearings- 
only measurements. To accompBsJi track araociatlon between two stations, tlie residuals of a bank of nonlinear 
iiiters tailed modiiied gain extended Kalman filters are analyzed. Once tracks liave been associated between two 
stations, tracks from additional stations may be associated with tracks from the first two stations by checking 
algebraic parity equations, 'traditional track assodation methods rely on the local stations' estimated target 
positions and error variances. Ibese local estimates may be quite inaccurate or even divergent when using bearings- 
only measurements. Our m^hod bypasses this difficulty because our filters use raw data from multiple stations. 
An example demonstrate that our methods yield results superior to those of standard methods. 

I.   Introduction 
SUPPOSE that several spatially distributed radar installations 

are each tracking severd targets. Associating a given target to 
its track at each of the radar stations is an important issue, which 
the radar literature refers to as the track-to-track association prob- 
lem. Suppose further that the stations use passive sensors that only 
measure bearings to the target, without measuring range. In ttiis pa- 
per, we outline a strategy for solving Ms association problem by 
analyzing measurementresiduals. 

Bearings-onlyobservation functions fall into two special classes 
of nonlinear functions, called modifiable and approximately modi- 
fiable nonlinearities, which are defined as follows: 

Definition L A time-varyingfunction /: R" -* M* is called mod- 
ifiable if there exists an operator A: R* x R" ->• M' '^" such that for 
anyx,jteR", 

f(x) - /(x) = A[f(x), mx - X) (1) 

Definition 2. A time-varying ftinction /; R" -* E» is called ap- 
proximatelymodiiiable if there existsaregioni? C R" and operators 
A:]R«xM"^R»'<"andf :R"xR"-* M""" such that for any X, 
xeD, 

f(x) - fm = lA(f(x% x)+e(x,x- xMx - X)      (2) 

where lim,^_j,.^o llf (*. * -*)ll/l|A(/(x). x)|| =0. 
Song and Speyer's modified gain extended Kalman filter 

(MOBKP)' is a globally convergent, unbiased, nonlinear observer 
for systems whose measurement fimctions are modifiable or ap- 
proximately modifiable. In this paper, the observers we design for 
bearings-only track association are MGEKFs. 

An early attempt at solving the track-to-trackassociationproblem 
was made by Singer and Kanyuck.* In thefr paper, they incorrectly 
assumed diat estimation errors local to each station were uncorre- 
lated. Bar-Shalom,' Bar-Shalom and Fortmann,* and Bar-Shalom 
and Campo' later corrected this error by accountingfor the correla- 
tion between the local estimation errors due to the common process 
noise of the target. Later researchers have integrated the problem 
of track association directly into the process of separating the mea- 
surements corresponding to actual targets from clutter.*' In all of 
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these references, it is assumed that both range and bearings were 
measured. In some of ttiese references, the possibility of using a 
MGEKF to handle the situation of bearings-only measurements is 
mentioned, but none have a discussion of the details of such an im- 
plementation,in particularproblems associated with the asymmetey 
of single station estimation errors. Estimates based on bearings-only 
measurements from a single station are especially uncertain along 
the line between the target and the receiver. This tjncertainty is re- 
duced when measurements from physically separated stations are 
used. Our method attempts to take advantageof this phenomenonby 
using estimates constructed from several stations' measurements. 

The paper is organized as follows. We show in Sec. n that 
bearings-only measurement functions are modifiable. (Prior results 
only showed that they were approximately modifiable.*) We then 
demonstrate in Sec. Ill that incorrect associations between two 
radar stations can be interpreted as sensor faults, so that a bank 
of modifled-gain fault detection filters can be used to determine the 
track associations. Section IV contains the main result, an algo- 
rithm for solving the bearings-only track association problem. The 
application of this algorithm to an example in Sec. V compares our 
approach to a conventional track association method. Section VI 
concludes the paper. 

In the sequel, inertial Cartesian coordinates describe the motion 
of each target in three dimensions via the state vector 

x' = [X'    Y'    Z'   X'    Y'    Z'   X'    Y'    Z'f      (3) 

and the dynamics of each target are assumed to be of tiie form 

^ik + l)=A(k)3^{k) + B(k)w'(k) (4) 

Note that we include an acceleration state to model maneuvering 
target dynamics. 

II.   Modiflability of Bearings-Only Measurements 
Song and Speyer' showed that the azimutii angle az'^e 

[-jr/2,3r/2) andtheelevationangleel,' € [-3r/2,3r/2) fromstation 
s to target t, as shown in Fig. 1, are modifiable and approximately 
modifiable, respectively. The region O in which the elevation angle 
was approximately modifiable excluded an ellipsoidal region near 
the sensor, making flieir algorithms difficult to implement for situa- 
tions where the angular sensor gets close to the target, for example, 
in the terminal guidance of a missile. We improve this situation 
somewhat by introducing the new angle *^ e [—jr/2, n/2) and de- 
scribing the position of (he target in terms of *] and 4>J = az'^. 
Note that Vj can be calculated from azj and dj via the equation 

*--"-(f)=-(S|) (5) 

TTjis section is devoted to proving that the measurement function 
for ^l is modifiable. ' 

I^t i? be an estimate of x' and assume that the position of the 
measurement station in inertial space, x, = [X, Y, Z,], is known. 
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Target® 

Fig. 1   Angles for tai^rt bearings. 

Then XJ, F/. ZJ, XJ. ?/, and Z,' can be computed by taking the 
difference between elements of a:', i', and*,. 

Suppose fliat station J measures the bearings of target t with the 
measurement vector 4. Eteflne A,(*') by 

h.(x') ■■ =4 (6) 

The measurement residual correspondingto A,(*') is then 

^   "tan-'(F.'/xi)-tan-'(F//xj)' 

Ltan-'(Zi/xj)-tan-'(zj/xj)_ 

Applying the trigonometric identity 

tan-'(«) - tan-'(fc) = tan"'[(a - A)/(l +ab)] 

we obtain 

tan 'a 
tan"'^ (7) 

tan '« 
_tan-'j8_ 

tan ' u 
tan ■1 

1 + (Z|/XJ)(ZJ/XJ) 

tan"'I -i-^ «-=«■ I 
\xjxj + F/y/; 

L     vx|X{ + zjzi;j 

(8) 

(9) 

Define 

«fe)^ 

"sin(*j) —cos(<i>j) 

.sin(*i) 0 

0 0   0   0   0   0   0 

-cos(*j)   0   0   0   0   0   0_ 

(10) 

Let   dA-jmif+mn,   D,=4/[XJXJ + F;F,'].   di^ 
^[(XJf + (ZJ)2]. and Di = di/mX', + Z',Z\l Note also that 
sin(*J) = F;/d,,     cos(«J) = XJ/4.     sin(*,') = ZJ/4.     and 

cos{*p = XJ/rf2. Tlierefore, we can express Di and £>2 as func- 
tions of the estimates and measured angles: 

D, = I>,(4,i') = l/[cos(*l)xj +sta(*l)F,'] 

D2 = 02(4,*') = i/[cos{*;)x;+sm(*,')z;] 

If we express the trigonometric functions in H(x\), Di, and £>2 
in terms of XJ, F/, ZJ, XJ, FJ, and ZJ, we can write Eq. (9) as a 
function of z! andi': 

H{4)[X'-X,]   (11) 

D,(4,*')       0 

0       02(4. *•). 

X H(ZJ) [X' - ^ - i' + X,] (12) 

and combine it with Eq. (7) to obtain A, (jc') in modifiable form, 

*,(*•)-*,(*•) = 

i3,(4,i')tan-'«(4.F) 

r«( 4.* )1 '0,(4,5')       0 

.^fe.i'). .      0           D2(4.*')_ 

Finally, we can rewrite Eq, (11) as 

-1" "l/aCzJ.i-)            0 "D 

-1. 0 1/^fe.i'). 

«(4.i') 

0 
l?2(4,f)tan-'^(4.x') 

^(4.*') 

XH(4)[X'-X'] 

where we have made use of the identity 

H(4)fc-*'] = 

(13) 

TTius, we havereplaccdtheelevationanglecl^, from which Songand 
Speyer' produced an approximately modifiable function with a new 
angle *|. Like the azimuth angle *J, angle *| leads to modifiable 
measurement ftinctions. 

IIL   Converting Incorrect Associations 
into Sensor Faults 

Suppose that stations can view several targets, indexedby i, and 
measures the bearings of each target. Then each of these measure- 
ments 4 is generated by h,(xf), as in Eq. (6). Now suppose that 
another station, using its local observations, generates a state es- 
timate of one of the targets that station j views. This estimate x' 
corresponds to x', the true state of the jth target at station s, but 
neither station knows the value of index J, Our goal is to determine 
which of the tracks at station s is the j'th one, using only {4}, the 
measurements local to station s, and x^, the other station's state 
estimate of one of the targets. 

To this end, let us form the following error residual between the 
estimate*' and the measurement4. making use of the result from 
the preceding section; 

4 - A,(JEO = *,(*■■) -fc,(iJ) = G(4,i^)(*' -x')       (14) 

where from Eq. (13) 

G{i,x') = 

0,(4,x')tan-'«(4,x^) 

a(4,ii) 

XH(4) 

02(4,i') tan-'j8(4,i^) 

^(4.*^ 

(15) 
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By introducing a zero term into the measurement residual, we can 
rephrase it as 

4 - hAxJ) = *,(*') - hAx') (16) 

4 -h,m = G(4.i')(*' -xi) (17) 

4 - h^m = G(4,F')(*' -X' +xi -xn      (18) 

4-A,(iO = G(4,i^)(a:^-F) + G(4.i^)(jr'-jr'')   (19) 

4 -ft,(i^') = G(4,*'■)(*' -iJ) + /i« (20) 

where i4' = G(4,i-')(^' -x^) represents the difference between 
x' and x^ as a sensor fault. If i = J, we have correctly guessed the 
associationbetweenmeasurementand estimate, and there is no fault 
(pff =0).lfi #j,then^i'#0,playingtheroleofasensorfauhin 
the residual. 

IV,   Algorithm for "ftack Association 
from Bearings-Only Measurement via Fault 

Detection Filters 
Suppose that there are S radar stations, wift known inertial coor- 

dinates, that make bearings-onlymeasurements in three-spaceof T 
different targets. We assume that all measurements at each station 
have been grouped as tracks of each target visible at that station 
using conventionalmeans."'*'' In this section, we propose an algo- 
rithm for associatingthe tracks at all stations to their corresponding 
targets. 

Assume that each measurement station s is located at known 
inertial coordinates (X„ F„ Z,). I^t i" denote a fault detection 
filter's estimate of the target corresponding to the ith track at the 
first station.llie bearings-onlymeasurementfunctionfor the station 
s of the same target is thus 

*.(*") = 

\x«-xj 

zi - A,(x") « G{zi,i")(Jt" -i") -1- fJJ + vJ        (21) 

where G(^,i'') is given by Eq. 15 and the sensor noise is 

TheapproximatestructureofEq.(21)isduetothereplacementofthe 
measurement function in G(; ■) with the actual measurement (see 
Song and Speyer'). Note that, by default, ^f =0, Vi = 1,..., T. 

Ihe following algorithm, illustrated in Fig. 2, associates tracks 
between stations. 

Algorithm (track association): 
1) Let 1 = 1. 
2) Run a bank of T detection filters that operate on data from 

stations 1 and 2, where the jth filter attempts to detect n'i. Each 
filter is constructed using the dynamic detection filter procedure 
given next. All but one of these detection filters should register a 
fault. The track corresponding to the filter that detected no fault is 
associated with 4. Without loss of generality,label this track^. 

3) For each track4, « = 3,..., S, I = 1,..., T, perform the al- 
gebraic parity test given subsequently. If the result of the parity test 
is zero, then 4 is associated with 4 and 4 • 

4) If i < T, increment i by 1 and go to step 2. If i = T, we have 
completed the track association procedure. 

Note thatestimatesobtainedinstep2are used in step3,Therefore, 
stations 1 and 2 should be chosen to maximize observability of the 
targets. 

Ifyiianiic Drtection Filter 
Ftor any estimator of*", the estimation residual determined by 

the measurements 4 andzj will not converge to values near zero 
unless4 and4 correspondto the same target. One such estunatoris 
the MGEKF' given as 

I'Hk) 

¥tom the results of the preceding section, the error residual of track 
J at any station s, generated by target I at station 1, is given by 

x^'(k + l)=A(k)x^'lk) 

4(*)-A,[x"(ft)] 

x"ik) =x"m +K'Hky'(k) 

M'Hk+1) = A(«:)F''(ft)A''(jfc)+am 

(22) 

(23) 

(24) 

(25) 

*jt«(t) = 

{1 + [(f" - F,)/(X.. - X,)f]{xn - X,f     \l + [{Y« - F,)/(X.. - X,)f]{xv. - X.f 

 Z'J - Zi  

{1 + p'i - z,)/(x.. - x,)f )(x.' - x,f 

?" - F, 1 

(1 + [(?" - >'2)/(*- - X,)f]{x» - X^f      jl + [(?.. - F,)/(l..- - X,)f](x^> - X,f 

Z'' - z. 

_    {1 + {{W - 2,)/(x« - X3)f )(X.. - X,f 

0 
 1  

{l + [(z.7-2.)/(*>.-X,)f)(x"-X,f 

0 
 1  

{l + [(zy-Z,)/(X"-Xa)f)(X..-X,f 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

(26) 
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Table 1   Radar station portions 

Station            ;c Position,   y Position, 
identification         m               m 

z Position, 
m 

1 50               1 
2 50.0(H)                1 
3 25,0(X)          -400 

0 
50 

100 

where 

Track i 
from statiim 1 

Tmiks   . 
ftom detection 

tHdefonn 
simimi 2 tfiat 

^ack I, station! 

Bi^of 

parity asts 
Track from 
^tion s that 
bestmsgctes 
tsack if stationl 

(27) 

(28) 

Fig, 2   Ttrack association procedure, 

K>Hk) =Af^(*)F,,,,,[*,i.(„M«(fc)Aj-,,j^, + F^(t)]" 

-r- , ,1      lG{z>,m,x"(k)) 

[G(zi(t).i"(*)) 

P'Hk) = {l - K'Hk)Gyt(k),zim,i^'(k)]]M'Hk) 

X [l-K'J(k)Gyt(k),4m,x''(k)]Y 

+K'Hk)(V'rHk)(K?'f(k} 

where 

V'Hk) = dmg[V,VJ} 

The weighted innovations process of the MGBKF, 

,/Hk) = [A,M«)M'^(t)Aj„j,, + VHk)] f»{k)       (31) 

should be close to a zero-mean, unit variance white noise sequence 
only if z| andz| correspond to the same target. 

A^ebraic Parity Test 
This test determines ifzJ.S>j>2,r>I>l,is associated with 

z', andzj, where z*, andzj are already known to be associated with 
each oflier. Suppose thati" is the state estimate generatedby 4 and 
zl.Tlien.if^ is associated with die tracks z| and^. 

(29) 

(30) 

vmf = [*,.,„M''(t)fcJ„^,, + FV(t)]  |4(*) - A,[i"(t)]} 

(32) 

should be close to a zero mean, unit variance white noise sequence. 
Here, the approximate measurement matrix Ax"(*) is computed in a 
manner similar to the first two rows of the matrix in Eq. (26), but 
referenced to (X,, F,, Zj), the location of station s, instead of the 
location of the firet station (Xi, Fj, Zi). Tlie algebraic parity test is 
simply to evaluate the parity equation (32). 

V.   Example 
The track association algorithm presented in the last section is 

applied to sunulation data in this section. Three radar installations 
were located at the positions given by Table 1, and two targets 
were both modeledas ninth-onJerlineartime-invariantdiscrete-time 
systems with the dynamics 

0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 —a 0 0 
0 0 0 0 0 0 0 —a 0 
0 0 0 0 0 0 0 0 —0 

'0 0 0" 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
p 0 1. 

(34) 

and where w is a zero mean Brownian motion process with covari- 
ance /a x 3 and a = ^ is the time constant for the first-order filters 
that model target maneuvers as colored noise processes. We sample 
this model at intervals of r =0.1 s to generate the discrete time 
dynamics 

x{k -I-1) = Ax{k) + Bw(k) (35) 

where 

'= I    e^'Bdt, 
Jo 

Ht) = Fx(t) + Twit) (33) 

A = e'-',        B= I    e"Bdt,        E[w(k)] = Oi^i 

£[H'(ft)w''(l)]=/3,3«« (36) 

The targets began the simulation with the initial conditions 

*,(0) = I50   220,000   30,000   250   -1000  0   0   0   Of 

*2(0) = [50,000  20,000  35,000   -250   1000   0   0   0   0]'' 

This configuration corresponds to the two targets initially moving 
directlytowardeachother,inalinethatalmostpasses through station 
2. In the simulation, they pass closest to each other at f=99.2 s. 
Each measurement station measures the angles <i>J and I'j to each 
target at every sample time. These measurements are subject to 
additive, normally distributed zero-mean white measurement noise 
with standard deviation 1 deg. We assume that the me^urement 
noise is independentbetween sensors at all stations. Each MGEKF 
begins with the a priori information 

i"(0) = [25,000   120,000   32,500   0   0   0   0   0   0]'' 

F'(0) = 10''x/,„ 

Finally, we assume that tfie local stations were able to separate their 
measurements from clutter perfectly using methods like (hose of 
Reid' orBar-ShalomandFortmann,* orFortmannandBar-Shalom.* 

Figure 3 plots the weighted innovations of a MGEKF that uses 
measurements from stations 1 and 2 that correspond to the second 
target, whereas Fig. 4 plots the weighted innovations of a MGBKF 
that uses measurements that are mismatched. Note that die inno- 
vations for the correct match appear to be a zero mean white noise 
sequence, whereas the innovationsfor the incorrect match are larger 
and are not white. To better observe the behaviorof these sequences, 
their means wereestimatedusingaKalmanfiIter(assumingdiat each 
element of the weighted innovation of the MGEKF was a measure- 
ment of a process that had integrator dynamics, process noise with 
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§0 
3 
5 
I -2 

ttn6(6ec) 

Btg, 3   MGEKF rKidual for matching tracte. 

Urns (sec) 

Hg. 4   MGEKF residual for mismatched tracls. 

0 50 ^     ^     ^ 100 150 
thie(seo) 

rig.S   Filtered MGEKF residual for matching tracks. 

covariance 10"', and measurement noise with covariance 1). These 
estimates (Figs. 5 and 6) clearly show that the mean corresponding 
to a mismatch looks nothing like that of the matched case. 

After the tracks had been associated between the first two sta- 
tions, algebraic parity tests attempted to associate the targets ob- 
served by the third station relative to those observed by the first 
and second stations. TWo plots of residuals generated by the alge- 
braic parity tests appear in Figs. 7 and 8. Again, the residuals for 

ttne (sec) 

Fig. 6   Filtered MGEKF residual for mismatched tracks. 

Vine (sec) 

Fig. 7   Parity test reddual for matching tracia. 

flme(s8c) 

Hg. 8   Parity ttst residual for mtematch^ trades. 

the mismatch are much larger than those correspondingto a correct 
association. 

For purposes of comparison. Fig. 9 plots the error statistic de- 
veloped by Bar-Shalom' and Bar-Shalom and Fortmann'* for both 
a correct and an incorrect track association (using the same data 
sequences that were used by the filters in Figs. 3 and 4). Note 
that the chi-squared error statistic does not change much between 
the matched and mismatched cases. We also noticed that fliere 



1148 WOLFE AND SPEYER 

3S 

30 

1 

time (see) 

Fig, 9   Error ^atistic ai^ested by Bar-Shalom? and Bar-Shalom and 
Fortmann*: Oti —xtfElUt —hVit —ijFlCci —Xi). 

h s^msSs using dafe from ^jgi 1 im^ 

^ 

}i k^ ai^Mi««--^ ,»«■,■ 
m 100 

Wig. 10   Eudidean nonii of error in tracking target 1, 

were several instances where nearly singularmatrices were inverted 
in the algorithm that computes the covariancc of the difference 
between two local estimates. 

I^rt of the re^on for this difficulty is explained in Fig. 10, a 
plot of the Euclidean norm of the estimation error. The solid line 
correspondsto a MOEKF that uses measurements from both station 
1 and 2, whereas the dotted line is from a filter that only used station 
1 measurements. Any method that relies on estimates that only use 
a single station's measurements is subject to a large error. This is 
not a huge concern for linear estimators, but the matrix f^ defined 
by Eq. (29) may not necessarily reflect this error. 

We have also encountered cases where a single station measure- 
ment MOEKF was divergent in the radial direction to the target, but 
no such difficulties have appeared when data from two geograph- 
ically disparate stations was used. One way of generating such a 
divergent case was to decrease the maneuver colored noise auto- 
correlation parameter a to ^ or below. We note that values of this 
parameter below ^ correspond to slower maneuvers, a commonly 
encountered situation. 

VL   Conclusions 
Tliis paper describes residual-based techniques for solving the 

radar track association problem for bearings-only measurements. 
The association between the tracks at two stations can be deter- 
mined by examining flie residuals of a bank of MOEKFs. Once this 
association is established, an algebraic parity test can find the cor- 
respondence between tracks at other stations and targets tracked by 
the first two stations. 

One may ask why detection filters are necessary: Why not do 
everything wifii algebraic parity tests? Although the detection fil- 
tering step is not strictly necessary, it does improve the quality of 
the track associations because the state ratimates constructed from 
two widely separated stations are so much more accurate than the 
estimates from a single station. 

To ensure the quality of the estimates from the MGEKFs, one 
could delay the algebraic parity testing steps for associating tracks 
from additional stations. If these parity tests are replaced with ad- 
ditional detection filter banks until the estimates before and after 
including a new station's measurements are sufficiently close, then 
the fidelity of the estimates can be guaranteed. 
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ABSTRACT 

Although the exact GPS solution proposed by Bancroft 
is nonlinear, it may be manipulated into a linear form 
when 5 or more satelUtes are visible. This linear form 
is exact, as opposed to the linear solution obtained via 
repeated linearization in the iterated least squares (ILS) 
method. By virtue of this exactness, the solution of 
the linear form is always the true user position, while 
the ILS may converge to an incorrect solution (this is 
especially common when the GPS user is in space). 
When the measured pseudoranges are noisy, the linear 
structure ensures that the position estimate will conveige 
to the correct value and that the error covariance of the 
estimate is known, guarantees that have not been found for 
nonlinear estimators that use the Bancroft solution directly. 
The conversion to the linear form excludes information 
present in a single scalar nonlinear measurement equation. 
We demonstrate several procedures for refining the linear 
estimate with this remaining information. In addition, 
we show that the methodology developed for direct GPS 
solutions can be appHed to create linear direct methods for 
differential GPS problems. 

1   INTRODUCTION 

The purpose of the NAVSTAR global positioning system 
(GPS) is to allow a user to accurately determine their 
three-dimensional position. The system consists of a 
constellation of satelUtes, each of which broadcasts a 
predetermined time-vaiying code, known in advance by the 
user. The user can thus calculate the delay between the 
broadcast time fiom each satellite and the time of reception, 
which translates into a pseudorange from the receiver to 
that satellite. Since the positions of the GPS satellites 
are accurately known, these pseudoranges can be used to 
triangulate the user position. Because the user's clock does 
not align precisely with the clocks on the GPS satellites, the 
me^ured pseudoranges are not true ranges, and therefore 
the error between the user clock and GPS time must be 
estimated in order to accurately determine the user position. 

The pseudoranges are nonlinear functions of four 
unknowns: the user position in three-sp^e and the user 
clock enor. Determining the unknowns therefore requires 
the pseudoranges from at least four non-coplanar GPS 
satellites. In view of this restriction, the orbits of the 
satelUtes in the GPS constellation were designed so that 
most earthbound users view at least four GPS satellites at 
any given time. 

The most commonly used method for determining 
the unknowns is an iterated least squares (ILS) mettiod, 
e.g. the one in Ref. [1], This method amounts to a 
gradient search procedure to minimize the error between 
the measured pseudoranges and pseudoranges constructed 
from the estimated unknowns. 

If the pseudoranges are noiseless, one may solve the 
pseudorange equations directly for the unknowns, as first 
reported by Bancroft [2], This direct method was later 
refined and adapted to the case of noisy measurements 
[3, 4, 5, 6]. The estimates obtained by each of these 
methods all depend on the solution to a quadratic equation. 

In this paper, we manipulate the measurement 
equations into a Unear form, which is not dependent on 



approximate knowledge of the user position. It is thus a 
direct method, but one that does not require the solution 
of a set of nonlinear measurement equations. Although 
Leva [7] has previously shown that such a linear structure 
existed, he used it solely for the purpose of determining 
when unique solutions to the GPS equations existed. In 
this work, we exploit the linear structure to obtain better 
estimates for systems with measurement noise. 

The notation is as follows. The column vector SW 
denotes the position of the ith satellite in aa inertial 
reference frame, and the user position in the same reference 
frame is a column vector denoted by x. The error between 
the user's clock and GPS time is denoted by At. This 
clock error causes a bias of cAt in all of the pseudoranges, 
where c denotes the speed of light. X = [x'' cAt]^ 
denotes the vector of unknowns for the GPS problem. The 
operator < •, • > denotes the EucUdean inner product, and 
the operator || • || indicates the Euclidean norm. E[-] is the 
expectation operator. The number of GPS satellites visible 
to the user is m. 

A review of the ILS algorithm appears in the next 
section, followed by a review of the direct solution in 
Section 3. Section 4 describes our Unear direct method. 
An extension of this method is made to the differential 
GPS problem in Section 5. Because the linear direct 
method does not use all of the information present in 
the measurements, we propose several methods in Section 
6 to improve upon the linear direct method's estimate 
by using the information present in the scalar nonlinear 
me^urement equation that was excised in the construction 
of the linear direct method. Section 7 compares the 
accuracy of several direct methods operating on a simulated 
data set, and Section 8 concludes the paper. 

2   REVIEW OF THE ILS ALGORITHM 

For the ith visible GPS satellite, the measured range from 
the user to the satellite is given by 

pW = ||SW - x|| + cA« +»;«. (1) 

Let us denote /(S(<),X) = ||S(*) - x|| + cM. When 
equation (1) is linearized about nominal values of pl'\ 
cAtt and x„ it becomes 

5pW=P(S»,X)5X + »j«, (2) 

where 

5pW = pW - # = p(*) - /(S«, X,),        (3) 

tfX = X-X., (4) 

and 

^^^ '^)-     ax     x=x. 
The ELS algorithm proceeds as follows: 

(5) 

Algorithm 2.1 (ILS). 

1. Setj=0. Let Xo be the initial estimate ofK. 

2. Set a convergence tolerance e. 

3. Let W be the covariance of the noise vector rf 
WD    rjm n(m)l 

4. Compute P(S», X,),        i = 1,2,.... TO, 

5. Use the measurements p^^\p^'^\..., pt*") and Xj to 
compute ^p(^), ipW,..., ip(*") via equation (3). 

6. Find the weighted least squares estimate ofSK using 
theformula 

S±= iF'^.W-^F)-^F'^W~^5p, m 
where 

r,(2) 

LP' 
(ni) 

pi: 

P(S(i),X,) 
P(S(2),Xj) 

PCsw.Xj). 

7. Update the estimate using the relation X^+i = Xj- + 
5±. 

8. If |<5X| < e, the estimates have converged to within 
the tolerance e and the algorithm can stop. If not, let 
j =j + 1 and return to step 4. 

Note that the initial guess Xo and the convergence 
tolerance c determine the number of iterations that the 
algorithm requires. If Xo is a bad guess, the algorithm may 
converge very slowly. 

3   REVIEW OF DIRECT METHODS FOR NOKY 
MEASUREMENTS 

This section presents a brief review of the Improved Direct 
Solution (IDS) developed by Biton, et al. [6], which is 
an «ljustment of Bancroft's direct method [2] to handle 
noisy data. Begin with the equation for the measured 
pseudorange from the user to the ith satellite 

pW = ||S»-x||+cAt + »jW, 

or equivalently 

||SW-x|| = pW-cAt-^W. 

Squaring this equation and rearranging terms yields 

(7) 

(8) 

■ 2 < S(*),x > +x + 2pWcAt - (f,W)2 + 

2pW^(*) - 2»jWcA« = (p«)2 - |lS(*)|p,    (9) 



where 

X^Mf-(cMf. (10) 

Typical values of the quantities in equation (9) are 

||SW||«10^TO,       ||a;||wlO^TO,       cAtwlO^m, 

»j<*' « Im, p<*) w lO^TO. 

If we ignore all tenns in (9) that are smaller than 10* 
meters, we have 

- 2 < S(*>,X > +x + 2pWcAt + 2p<*)j7W = 

(p«)2 _ IISWjp.    (11) 

We can assemble a vector equation by applying (11) to the 
measurements from every satelHte: 

HX + G»j = Ra + xR6= 

where 

H42 

r-(sw 
_(S(2) 

r r 
! 

-(SW)^ p(«)_ 

B«^ 

r(pW)2-||sW|pi 
(p(2))2_||s{2)||2 

s R6^ 

■-1 

-1 

_0W)2_|| sW|p -1 

G4diag{2p«,2p«,...,2p('»)}, 

^4[,{i)   ^(2)    ...    r)l^)f. 

(12) 

(13) 

(14) 

(15) 

(16) 

Since G is inveitible, equation (12) can be rewritten as 

G-^HX + 11 = G-iR„ + xG-^Rfc.        (17) 

Suppose fliat r) were a zeto mean Gaussian vector with 
covariance V. If x was a known quantity, and if the a 
priori estimate of X was the zero vector, and if the error 
covariance of this initial estimate was infinite, then 

X = [(G-^Hf V-HG-^H)]-! ■ 

(G-^UfG-HRa + X^b)   (18) 

is ttie least squares estimate of X. Substitution of the 
elements of X in (18) into the definition of x (10) results in 
a quadratic equation in the unknown x (the coefficients of 
this quadratic equation are independent of X and x. hence 
the nomenclature "direct solution"). Substituting the two 
solutions of this equation into (18) gives two candidates 
for X. Only one of these candidates will satisfy the 
measurement equation (12). 

Note th^ for the noiseless case, the estimation 
equation (18) simplifies to 

X = [H''H]-iH''(R, + xR6), (19) 

which is the estimation equation used in the original 
Bancroft method. 

4   THE LINEAR DIRECT EQUATIONS 

The only nonUnear term in the vector measurement 
equation (17) is x- We demonstrate the means to remove 
this nonlinearity below. 

The matrix G~^R6 is rank 1. Hence, a rank (TO — 1) 
matrix E exists such that EG~^Rt = 0. In fact, there are 
an infinite number of such annihiMor matrices, with 

E^ 

-1     0 
0     -1 

0      0 

G 

being an obvious example. Multiplying the GPS 
measurement equation (17) on the left by the annihilator E 
creates (TO — 1) completely linear exact GPS measurement 
equations: 

EG-^HX + Er7 = EQ-^R^. (20) 

Remark 4.1. If the noise vector rf is assumed to be a zero 
mean Gaussian with covariance V = E\rirf^\, the single 
epoch least squares solution of the linear measurement 
equation (20) that minimizes the cost Junction 

J = [EG-^Rs - EG-^HX]^(EVE^)-i • 

[EG-^Ra - EG-^HX] + X^'Mo ^X   (21) 

is given by 

Xo = [H''(G-i)''E^(EVE'')-iEG-iH+Moi]-i. 

(EG-iRa - EG-^HXo),    (22) 

where Xo is the a priori state estimate and Mo is the 
(potentially infinite) a priori error covariance. The error 
covariance Po = B[(X - Xo)(X - Xo)''] of the estimate 
is 

Po = (H^(G-if E''(EVE^)-i • 

EG-iH + Moi)"\   (23) 

Note that this error covariance will typically be larger 
than that for an ILS estimate, since the projected 
measurements have effectively double the noise of the 
original measurements. Hence, using the estimate obtained 
in (22) as the initial guess XQ in the ILS algorithm 2.1 
would be a good strategy. Since XQ is very close to the 
true position, the IIS algorithm should converge in a step 
or two. Section 6 derives a similar method that gives even 
better results. 

If a state model is available, a Kalman filter can 
be constructed for estimating the vector X. Assuming 
that the measurement noise sequence T) is an independent 



and identically distributed (lid.) zero mean Gaussian 
random sequence with covariance V, equations (22) and 
(23) describe the update equations for such a Kalmanfllten 
Note that an extended Kalman filter is not required, as all 
of the measurement equations are linear. 

5   EXACT LINEAR SOLUTION OF NOBY DIF- 
FERENTIAL GPS EQUATIONS 

Suppose that we are interested in knowing the distance 
Ax = X2 - xi between two receivers located at the 
positions xi and xa. Let cAti be the clock bias of first 
receiver, and let ctSii be the clock bias of the second. 
Define ctA\i as the difference between the two clock 
biases, cbtxi = ctAi - cbA\. 

For each satellite i that is visible to both receivers, 
there are two me^urements available: pj*' = ||SW - 
xill + cMx + -qf and 5pW i= ||SW - xaH - ||SW - 
xi 11 + ctAii + JJIJ . Note that i^ and rl^ are correlated, 
but the magnitude of jjf j' is less than that of 17P due to the 
elimination of common mode errors from the differential 
measurement. If 5pW is a differential carrier phase 
measurement, then jjjj should be very small compared to 
i\(K since carrier phase multipath is much smaller than 
code multipath. 

Proposition 5.1. the distance between the receivers Ax 
satisfies the following equation for each visible satellite i: 

- 2 < SW, Ax > +IIX2IP - llxilp + 2p»cAti2 + 

25pWcAti + 25pWcA*i2 - 2cAticAii2 - {cAtnf + 

2p^^r§-2cMxir,f-2nfnfl-2cMtr§+2Sf^nfl- 

infif - 2cAti24' = 2pf JpW + (5pW)2.   (24) 

Proof Begin by noting the identity 

||S«-X2|P = 

(||SW -xill + (||S« -X2II - ||S» -xilDf.   (25) 

Expanding the quadratic terms on both sides yields 

||SW|p-2<sW,X2>+||x2|p = 

||SW|p-2<S»xi>+||xi|p + 

2||SW -xilKllsW -X2II - ||SW -xill) + 

(||SW-X2||-||SW-xi||f.   (26) 

Now substitute the definitions of Ax, pf> and 5pW into the 
above expression and rearrange: 

- 2 < SW, Ax > +IIX2IP - IlxilP = 

2(# - cAti - #)(5pW - cA*i2 - 4') + 

(ipW-cAti2-4')'-   (27) 

l*t us expand the terms on the right hand side containing 
the clock biases, giving us 

2<sW,Ax>+||x2|p-||xi|p 
(<)% 2(pr-#)(¥*)-cAti2-.7f 

2cAti5pW + 2cA«icAti2 + 2cMirif^ + 

(5p« - 4>)2 - 2cA<i2(tfp(<> - 4) + (cAtl2)^ 

which can be rearranged as (24). 

(28) 

a 
We can ^semble a vector equation by applying (24) 

to the measurements from every satellite: 

HdAX + GdJjrf + Red = R„d + XdRtd, 

where 

Hd 

-(SWf    5pW     (pW+^pW)- 
-(SW)T       5^(2)        (p(2)+^^(2)j 

AX^ 
Ax' 

cMi 
cAti2 

m 

„(l) 

"12 

L'?12   J 

Grf 4 2 diag{(p(« + 5p(«), (pP) + 5^(2))^... 

j(») A ,(<) R^i & -2cAti2€' - 2#t?i - 2cAti4 - 

(4if - 2cAti2»?i.        t = 1,2,...,m 

Red = 

iJ 
(m) 

tfcd 

Lod 

.   cd   . 

2pPjpCi) + (Jp(i))2 
2pPrfp(2) + (5p(2))2 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Xd = l|X2|P 

2p|'")^pW + (5p(»"))2_ 

xilf - 2cAticAti2 - (cAtia)^.  (36) 

Proposltton 5.2. AX, the solution to the vector equation 
(29), satisfies the rank (TO - 1) vector equation 

EdGj^HdAX + EdJJd + EdGjiRed = 

EdGjiR.rf,    (37) 

wWcA is linear in the unknowns Ax, cAti, and cAtia- 

Proo/ As for the standard GPS case, there exists a rank 
(TO - 1) left annihilator Ed to the rank 1 vector Gj^R^. 
Multiply (29) on the left by E^GJ^ to obtain (37),        U 



Remark S3 (Appnjximate Linearity), Equation (37) is 
already linear in the unknowns Ax, cAf 12, and cAti. If 
we make some mild approximations, we can remove the 
nonlinearities in the noise terms. The elements in (37) 
typically are of the following sizes: 

||SW|| 

cAti2 Im, 

cAti 

Im, 

Om< \\Ax\\ < lO^TO, OTO< ||5pW|| < lO^m. 

If we choose an unitary armihilator (i.e. EJGJ^RM = 
0, EdEj = Im_i. Such an annihilator always exists.) 
and ignore all terms in (37) that are smaller than 10 meters, 
we have 

EdGj^HrfAX + Band = ^dGj^'R-ad,      (38) 

which is linear in the unknown noises as well as in 
Ax, cAti2, and cAti. Note that this formulation 
holds even for very long baselines. In contrast, the 
linearization conventionally used for the measurement 
equation introduces significant errors when the distance 
between the two antennas is larger than 100 kilometers 
[8]. It should be noted that terrestrial differential GPS over 
long baselines is still subject to larger noises than those 
associated with shorter baselines, due to noncommon mode 
ionospheric errors. 

6   NONLINEAR CORRECTION 

In the course of the derivation of the linear exact solution, 
some of the information in the measurement vector 
G~^Ra is not used, namely the part of G~^Rs that 
is orthogonal to the projector E. This information can 
be recovered by applying IlJ'(G~^)^, the orthogonal 

s complement of E, to the nonlinear measurement equation 
(17), which yields the following scalar nonlinear equation: 

where 

HX + G^ = Ra + R6X, 

Ra = Rj (G~ ) G~ Ro, 

m^Rf(G-TG-^Rt, 
H 4 Rf (G-ifG-^H,       G ^ Rf (G- -IsT 

(39) 

(40) 

(41) 

(42) 

Remark 6.1 (Independence of measurement noise). 
Note that if the measurement noise tj is assumed to be 
composed of independent and identically distributed 
zero mean Gaussians (i.e. E[ril = 0, E[rjTj] = o^l) 
then R|'(G~^)'^»7 is uncorrelated to the noise in the 
measurement equation (20).' 

E[Br,inliG-^fr,f] = E[mr,ri'^G-^m       (43) 
= E(<r2l)G-^R6 (44) 
= cr^EG-^Rf" = 0.      (45) 

This means in particular that Rf (G ^)^ri is independent 
of Xo, the estimate based on the measurement equation 
(20). 

The independence of XQ and the noise in (39) 
suggests several methods for adding a correction to 
the linear estimate based on the nonlinear part of the 
measurement equation. Some possible corrections are 
a linearization of the nonlinear equations, a minimum 
variance linear estimate based on the nonlinear part, a 
maximum likelihood estimate based on the nonlinear part, 
and a conditional mean estimate based on the nonlinear 
part. The following subsections detail each of these 
methods. 

6.1   LINEARIZATION OF NONLINEAR PART 

When linearized about XQ, equation (39) becomes 

JHX + ^ = R„, (46) 

H4{H-R6[if   -cSo]}, (47) 

f,^n{G-'fn- (48) 

where 

Since ij is independent of Xo the updated estimate 
that makes use of the linearized measurement equation (46) 
is calculated using the standanl least squares update 

X = Xo + PoH''(HPoH'" + ((T^Rfc)-!) . 

(R„-Rr(G-ifG-iR„),    (49) 

where Rs is the me^urement corresponding to XQ: 

Ro = 

{||Si-xo|P + cAtof-|lSi|p 
(||S2-Xo|P+cAtof-||S2|p 

_(||S"'-xo|p + cA«o)  -||S m||2 

(50) 

6.2   MAXIMUM LIKELIHOOD ESTIMATE USING 
NONLINEAR PART 

The a priori probability density fimction (pdf) of X given 
by the linear estimate equations (22) and (23) is 

p(X) = ;2^)2|Po|V2 

exp{-i(X-Xo)''PoHX-Xo)}.   (51) 

Our objective is to maximize the joint probability density 
function of X and the measurement Ro, By Bayes' rule. 



this joint pdf can be expressed in terms of the conditional 
pdf 

p(X,R„)=p(R„|X)p(X). 

The conditional pdf we require is determined by using the 
nonUnear measurement equation (39) 

p(Ra|X) 
1 

exp{-^(ft« - HX - RjX^'QX)^},    (52) 

where 

(G-iR6)''(<r^I)(G-iRi)   (53) 

and 

Q^ 

10 0 0 
0 10 0 
0 0 10 
0   0   0-1 

(54) 

Then 

p(X,R,) = 
(2ir)5/2&|Po|V2 

exp{-^(R„ - HX - RftX^'QX)^ - 

|(X-XofPoHX-Xo)}    (55) 

2o-2 

is the joint pdf that we must maximize with respect to 
X. Clearly, maximizing p(X,Ro) above is equivalent to 
minimizing the fimction 

/W ^ r% (Ra - HX - RftX'-QX)^ + 
la 

1, 
(X-Xofp-i(X-Xo).   (56) 

The maximum likelihood estimate can thus be 
obtained by minimizing the ftinction /(X) expressed in 
equation (56). Note that / is not necessarily convex in 
X, so this minimization problem may not be an easy 
one. Since / is a smooth function, it is convex if and 
only if its' Hessian is positive definite everywhere. The 
relevant quantities to determine convexity and solve for the 

optimum via a Newton-Raphson algorithm are 

ax —/(X) = -^(R„ - HX - RftX^'QX) • 

(H + 2RfcX''Q) + 

(X-XofPj' 

(57) 

2 ^ 
^^/(X) = -^R6(R„ - HX - R6X^QX)Q + 

Jj (ii + 2RfcX''Q)'' (ii + 2RfcX^Q) 
p-i 

(58) 

63   CONDITIONAL   MEAN   ESTIMATE   USING 
NONLINEAR PART 

In the previous subsection, the joint probability density 
fimction p(X, R,) WM calculated. The density fimction 
p(Rs) is given by 

/*oo 

P(Ra)=/       p(X,R„)dX, 
■/—oo 

and by Bayes' nile, 

p(X|R„) = £i^). 

Then the conditional mean is 
/oo 

Xp(X|R„)dX. 
-OO 

(59) 

(60) 

(61) 

This conditional mean estimate is the one we really 
want, although the above integrals are difflcult to compute. 
Until these mtegrals arc solved, the maximum likelihood 
solution from the last section remains the best viable 
alternative. 

6.4   MINIMUM   VARIANCE   ESTIMATE   USING 
NONLINEAR PART 

I^t us describe the random variable X as 

X = Xo + AX, 

where Xo is the a priori estimate generated using the linear 
part of the measurement equations and AX is a zero-mean 
Gaussian random variable with covariance PQ. Then the 
nonlinear measurement equation (39) can be expressed as 

H(Xo + AX) + 

RbCXo + AX)''Q(Xo + AX) + G»7 = R„, (62) 

or upon rearrangement as 

iiiAX + Rt(AX)^Q(AX) + G^ = Ri,        (63) 



where 

Hi=H + 2R63CfQ, (64) 

Ri = Ra — HXQ — RJXQ QXQ. (65) 

Given this measurement equation and the a priori 
distribution of AX, the Unear minimum variance estimate 
of AX is 

AX = B[(AX)Rf ]B[RiRf ]-iRi, (66) 

as demonstrated in [9], Since we have already shown that 
AX is independent of the measurement noise Gr), the 
expectations in the above equation are readily calculated: 

^[(AX)Rf] = PoH'' (67) 

SlRiRf] = Rf {3(Pf 1 + Pia + Pis + PI4) + 

4Pf2+2PuP22 + 4Pf3 + 

2P11P33 + 4Pi3 + 2P22P33 - 
4Pf4-2PHP44-4Pi4- 

2P22P44 - 4Pi4 - 2P33P44} + 
HPoH^' + GVG^, 

Table 1: Comparison of errors in Monte Carlo simulations 

where Po has been partitioned as 

Po = 

Pii P12 P13 
P12 P22 P23 
P13   P23   P33 

Pl4 
P24 
P34 

'14 '24 P34     P44 

(68) 

(69) 

7   EXPERIMENTAL RESULTS 

The techniques developed in this paper were tested via 
Monte Carlo simulations. TTiese simulations each used the 
same real GPS satellite ephemeris data collected begiiming 
at 19:22:33.5 PST on Friday, October 13th 2000 at 
(-2.5192459e+06 m, -4.6431270e+06 m , 3,5626325e+06 
m) in GPS earth centered earth fixed (ECEF) coordmates. 
Each simulation located the GPS receiver at a random 
position, centered at (-2.5192459e+06 m, -4.6431270e-rt6 
m , 3.5626325e+06 m) in GPS BCEF coordinates, with 
standard deviation 1(K)0 km. The noiseless pseudorange 
measurements were calculated, then corrupted with zero 
mean, 15 m standard deviation Gaussian noise. Thus, 
a sequence of artificial measurements where the true 
user position was known was available for testing our 
methods. A series of 50 simulations was performed, each 
simulation containing 1191 data points. The results of these 
simulations are displayed in Table 1. 

The Monte Carlo simulations we used were fairly 
low fidelity, as they took no account of ionospheric 
or tropospheric noise. To check the validity of our 
results,   we also ran  a simulation on an Interstate 

GPS solution method mean error error std. dev. 
IDS 32.7163 m 1.3870 m 
IDSBIS 2 steps 32,7143 m 1.3869 m 
linear data only 581.0040 m 767.4165 m 
project, then Unearize 49.9955 m 69.8273 m 
project, then min. var. 35.9738 m 20.7965 m 
project, then max, lik. 32.7148 m 1,3866 m 

Table 2:    Comparison of errors from GPS  satellite 
constellation simulator simulation 

GPS solution method mean eiror error std. dev. 
EDS 34.3087 m 0.9417 m 
IDSBIS 2 steps 34.3196 m 0.9271 m 
linear d^a only 50.4577 m 25.2115 m 
project, then linearize 32.5180 m 2,0597 m 
project, then min, var. 34.3197 m 0,9271 m 
project, then max. lik. 34,3195 m 0,9271 m 

Electronics Corporation model 2400 GPS satellite 
constellation simulator, collecting me^urements with 
an Ashtech model Z-12 GPS receiver. This simulation 
followed the trajectory of an aircraft, initially located at 
(962850,28547m, -5200816.32182m, 3563520.00371m) 
in GPS ECEF coordinates, starting at 16:30:00 PST 
on Monday, January 22, 2001. The corresponding 
measurement sequence, which consisted of 1680 
measurement epochs, was thus corrupted by true receiver 
noise, as well as a good approximation of the trtjpospheric 
and ionospheric noises. As with the Gaussian Monte 
Carlo simulations, the ttue position of the antenna w^ 
known, allowing precise calculation of the estimation 
errore. The resulte of several solution techniques applied 
this simulation appear in Table 2. 

The linear method alone is not as accurate as 
other methods, because all of the information in the 
measurements has not been used. When the methods of the 
last section are used, ttie results are of comparable accuracy 
to those of Biton, et al. In fact, the magnitude of the errors 
of the maximum likelihood method differ from those of the 
IDS only by millimeters. 

The IDS scheme may be implemented in a recursive 
fashion, which is called the "IDS-Based Iterative Solution" 
(IDSBIS) in [6]. To our surprise, iterating the IDS failed to 
notably improve the accuracy of the solution in our Monte 
Carlo simulations, in contrast to the results reported in [6]. 
We speculate that this was due to the true Gaussian nature 
of die measurement errore in these simulations, whereas 
the real GPS measurements used by Biton et al. were 
comipted by non-Gaussian noises. 



8   CONCLUSIONS 

This papet presents a direct metliod for solving the GPS 
equations. For noiseless pseudomeasurements, the user 
position can be determined by solving a set of linear 
equations, without making any approximations. If the 
pseudomeasurements are noisy, the equations are still 
linear in the unknown position and clock bias, and the 
nonlinearities in the noise terms are small enough to 
be safely ignored. The solutions are applicable to the 
differential GPS problem, as well as the single user GPS 
problem. 

The conversion to a linear problem is wasteM in an 
information sense. That is, some of the measurement data 
is not present in the exact linear solution. The position 
estimate thus has a larger ^sociated em>r covariance than 
that associated with an H^S method that has converged 
successfully. Of couree, one cannot tell whether an 
ILS solution has converged to the correct mswer, so a 
tradeoff has been made between certainty of convergence 
versus precision of the estimate. We have presented 
several methods for improving the linear estimate by using 
the information not present in the linear measurement 
equations. These techniques yield results on par with the 
ad hoc procedure developed by Biton et al, while having 
a more sotmd theoretical basis and better understood error 
bounds and convergence guarantees. 
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A r^dnal-bawd sdieme is pwsenW for solving tlie radar tracl£-to-track aswdation problem using liearinp- 
only measurements. To accomplish tradt assodatlon betwwn two stations, the residuals of a bank of nonlinear 
filters called modified gain extended bbnan filters are analywd. Once tracks have been assodated between two 
stations, toacks from additional stations may be associated with trades from the liret two stations by checking 
algebraic parity ^nations. Itadltional track assodation methods rely on the local stations' estimated targ^ 
positionsanderror variancw. TTiese local «timatM may be quite inaccurate or even divergent when using bearings- 
only measurement. Our method bypasses this ditBcully because our filters use raw data from multiple stations. 
An example demonstrates that our methods yield results superior to those of standard methods. 

I.   Introduction 
SUPPOSE that several spatially distributed radar installations 

are each tracking several targets. Associating a given target to 
its track at each of the radar stations is an important issue, which 
the radar literature refers to as the track-to-track association prob- 
lem. Suppose further Ihat the stations use passive sensore that only 
measure bearings to the target, without measuring range. In this pa- 
per, we outline a strategy for solving this association problem by 
analyzing measurementresiduals. 

Bearings-only observation fiinctions fall into two special classes 
of nonlinear fiinctions, called modifiable and approximately modi- 
fiable nonlinemties, which are defined as follows: 

Definition 1. A time-varyingfimction /: M" ^- K* is called mod- 
ifiable if there exists an operator A: R« x R" -^ ]R« " « such that for 
any*,i6R", 

f(x)-f(x) = Alf(x),xKx-x) (1) 

Definition 2, A time-varying function /: R" ^- M* is called ap- 
proximatelymodiflableif thereexistsaregionP C K" andoperators 
A :R» X R» ^- R"'" andf :R'' x R" -^R""" such that for any x, 
xeT>, 

fix) - fm = iA{f(x), X) + eix, X - xMx - X)      (2) 

wherelim,^_„-.o Wix, x -i)||/||A(/W, 5)|| =0. 
Song and Speyer's modified gain extended Kalman filter 

(MGBKF)' is a globally convergent, unbiased, nonlinear observer 
for systems whose measurement functions are modifiable or ap- 
proximately modifiable. In this paper, the observers we design for 
bearings-only track association arc MGEKFs. 

An early attempt at solving the track-to-trackassociationproblem 
WS& made by Singer and Kanyuck.* In their pqser, they incorrectly 
assumed that estimation errors local to each station were uncorre- 
lated. Bar-Shalom,' Bar-Shalom and Fortmann,* and Bar-Shalom 
andCampo* later collected this errorby accountingfor the correla- 
tion between the local estimation errors due to the common process 
noise of (he target. Later researchers have integrated the problem 
of track association duBctly into die process of separatingthe mea- 
surements corresponding to actual targets from clutter.*' In all of 
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these references, it is assumed that both range and bearings were 
measured. In some of these references, the possibility of using a 
MGEKF to handle the situation of bearings-only me^urements is 
mentioned, but none have a discussion of the details of such an im- 
plementation,in particular problems Msociated with theasymmetry 
of single station estimation errors. Estimates based on bearings-only 
measurements from a single station are especially uncertain along 
the line between the target and the receiver. TTiis uncertainty is re- 
duced when measurements from physically separated stations are 
used.Our method attempts to take advantageofthisphenomenonby 
using estimates constructed from several stations* measurements. 

The paper is organized as follows. We show in Sec. 11 that 
bearings-only measurement functions are modifiable. (Prior results 
only showed that fliey were approximately modifiable.') We then 
demonstrate in Sec. Ill that incorrect associations between two 
radar stations can be interpreted as sensor faults, so that a bank 
of modified-gain fault detection filters can be used to determine the 
track associations. Section IV contains the main result, an algo- 
rithm for solving the bearings-only track association problem. The 
application of this algorithm to an example in Sec. V compares our 
approach to a conventional track association method. Section VI 
concludes the paper. 

In the sequel, inertial Cartesian coordinates describe the motion 
of each target in three dimensions via the state vector 

x' = ix'   Y'   z'   X'   r   Z'   X'   ¥'   Z'f (3) 

and the dynamics of each target are assumed to be of the form 

3^(k + 1)= A(fc)x'(it) + B(k)w'(k) (4) 

Note that we include an acceleration state to model maneuvering 
target dynamics. 

n.   Modifiability of Bearings-Only Measurements 
Song and Speyer" showed that the azimuth angle az^ € 

[—n/2, n/l) andtheelevationangleclj e [—a/2,3r/2) from station 
s to target t, as shown in Fig. I, are modifiable and approximately 
modifiable, respectively, lire region P in which the elevation angle 
was approximately modifiable excluded an ellipsoidal region near 
the sensor, making their algorithms difficult to implement for situa- 
tions where the angular sensor gets close to the target, for example, 
in the terminal guidance of a missile. We improve this situation 
somewhat by introducing the new angle *J € [—n/2, jr/2) and de- 
scribing the position of the target in terms of ^l and #J = 04 • 
Note that I*/ can be calculated from azj and el'^ via the equation 

*f = tan '   -T I = tan-' { '- I (5) 

TTiis section is devoted to proving that the measurement function 
for ^>l is modifiable. 

Let i* be an estimate otx' and assume that the position of the 
measurement station in inertial space, ;e, = [X, Y, Z,], is known. 

1143 
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■togeKO 

Fig. 1   Angl^ for t»tgtl bearings. 

Then XJ, F/, Zj. X,'. Yj, and Z,' can be computed by taking 
difference between elements of x*, i', and *,. 

Suppose that station J measures the bearings of target t with 
measurement vector 4. Define ft, (*') by 

*,(*•) = = 4 

the 

the 

(6) 

The measurement residual corresponding to A,(«') is then 

h.(x>)-h,m 

^  ■tan->(F;/xj)-tan-'(F;/Xi) 

Ltan-'(Zi/xj)-tan-'(zj/x;) 

Applying the trigonometric identity 

tan-'(a) - tan"'© = tan-"[(a - ft)/(l + ab)} 

we obtain 

tan •« 

_tan-'^_ (7) 

tan 'a 
tan-'^_ 

tan 'a 

tan-'/8_ 

i + (i7/xj)(?,'/xj) 

tan-'iSMzB/£i 
i + (zi/Jfl)(zj/xj) 

\X',X>, + YiYiJ 

\xix; + ziz<J 

(8) 

(9) 

Define 

H(4) ^ 

"sin(*j) —cos(4ij) 

_sin(*j) 0 

0 0   0   0   0   0   0 

-cos(*j)   0   0   0   0   0   0_ 

(10) 

Let   di^^(x;f+(Yi)%   D,i:4/[xjx; + r,'F;].   ^^4 
^UX'.f + mf}. and D2=d2/[XJXi + ZJZJ]. Note also that 
sin(#p = F,'/d,.     cos(*J) = XJ/rf,,     sin(*,') = ZJ/4,     and 

cosCWp = Xyd2. Tlicrefore, we can express Di and D2 as fiinc- 
tions of the estimates and measured angles: 

Dt = Dife.*') = l/[cos(4.j)xJ + sin(#j)F,'] 

©2 = 02(4,*') = l/[cos(*')xj +sin(*,')zj] 

If we express the trigonometric functions in H(zl), Du and D2 
in terms of XJ, F/^ ZJ. XJ, FJ, and ZJ, we can write Eq. (9) as a 
function of 4 andjc': 

a(4.i') "O.fe.i') 0 
H(4)[i'-jr.]   (11) 

-1 
-1 

.^(4.*')J      L      0 D,{zl,x')_ 
Rnally, we can rewrite Eq. (11) as 

l/aizUx-) 0       1 rD,(4,i') 

0       1/^(4. *')][    0       02(4.*'). 

X H(4) [,' - J:* - i' + jt,] (12) 

and combine it with Eq. (7) to obtain h, (x*) in modifiable form, 

P,(4,y)tan-'tt(4,x') 

a(4.i') 

P2(4.y)tan-'^(4.i') 

^(4.*') 
XH(4)[*'-X'] 

where we have made use of the identity 

H(4)te-Jt']: 

(13) 

Tims, we havereplacedtheelevationangleclj.from which Song and 
Speyer' produced an approximatelymodifiable function with a new 
angle *,'. Like the azimuth angle *J, angle *,' leads to modifiable 
measurement functions. 

ni.   Converting Incorrect Associatioim 
into Sensor Faulte 

Suppose that station s can view several targets, indexed by i, and 
measures the bearings of each target. Then each of these measure- 
ments 4 is generated by AjCx*), as in Eq. (6). Now suppose that 
another station, using its local observations, generates a state es- 
timate of one of the targets that station s views. This estimate x' 
corresponds to x', the true state of the Jth target at station s, but 
neither station knows the value of index J. Our goal is to determine 
which of the tracks at station 5 is the Jth one, using only {41, the 
measurements local to station s, and i^, the other station's state 
estimate of one of the targets. 

To (his end, let us form the following error residual between the 
estimate*^ and the measurement4, nwking use of the result firom 
the preceding section: 

zi-h,m=hs(3^)-hAx') = G{i,x')(i^ -xJ)       (14) 

where from Eq. (13) 

G(4.iO = 

Pi(4,f^)tan-'«(4,jc^) 

«(4.*') 

n 02(4.*^) tan-'^(4,J^) 

fik'XJ) 

xff(4) (15) 
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By introducing a zero term into the measurement residual, we can 
rephrase it as 

4 - hAx^) =h,m- h.m (16) 

4 -h,m = G{e„x')(j^ -xJ) (17) 

^,-hAxJ)=G{4,xJ)Q^ -xJ +x' -xJ) (18) 

zj -hAx') = G{4,X')(X' -x>) + G(4,iJ)(*' -«') (19) 

4 -hAx>) = G(^^,xf){x> -x>)-^ii> (20) 

where ^i' = G(4,*•')(*' —*') represents the difference between 
x' and x' as a sensor fault. If i = j, we have correctly guessed the 
associationbetween measurement and estimate, and there is no fault 
(^ii = 0). If «■ # i, then pti # 0, playing the role of a sensor fault in 
the residual. 

IV.   Algorithm for TYack A^ociation 
from Bearings-Only Measuremente via Fault 

Detection Filtere 
Suppose that there are S radar stations, with known inertial coor- 

dinates, that make bearings-only measurements in three-space of T 
different targets. We assume that all measurements at each station 
have been grouped as tracks of each target visible at that station 
using conventionalmeans.*'*'' In fliis section, we propose an algo- 

f rithm for associatingthe ttacks at all stations to their corresponding 
targets. 

Assume that each measurement station « is located at known 
inertial coordinates (X,, F,, Z,). l«t jt" denote a fault detection 
filter's estimate of the target corresponding to the ith track at the 
first station.lhebearings-onlymeasurementfunctionfor the station 
f of the same target is thus 

*.(*") ■■ 

4 - A,(i") « G(4,i")(*" -i") -I- MJ* + V        (21) 

where G(2j,i") is given by Eq. 15 and the sensor noise is 

'nieapproximatestructureofEq.(21)isduetothereplacementofthe 
measurement function in G(-, •) with the actual measurement (see 
Song and Speyer'). Note that, by default, ^',' =0, Vi = 1,..., r. 

The following algorithm, illustrated in Fig. 2, associates tracks 
between stations. 

Algorithm (track association): 
l)Let« = l. 
2) Run a bank of T detection filtere that operate on data from 

stations 1 and 2, where the jth filter attempts to detect fj^. Each 
filter is constructed using the dynamic detection filter procedure 
given next. All but one of these detection filters should register a 
fault. Tlie track corresponding to the filter that detected no fault is 
associated with 4. Without loss of generality, label this track 4. 

3) For each track4,* = 3,..., S, 1= 1,.... T, perform the al- 
gebraic parity test given subsequently. If the result of the parity test 
is zero, then 4 is associated with 4 and 4. 

4) ff i < T, increment i by 1 and go to step 2. If i = T, we have 
completed the track association procedure. 

Notethatestimatesobtainedin step2 are used in step 3. Therefore, 
stations 1 and 2 should be chosen to maximize observability of the 
targets. 

Dynamic Drtcction Filter 
For any estimator of*", the estimation residual determined by 

the measurements 4 and zl will not converge to values near zero 
unless4 andz| correspondto the same target. One such estimator is 
the MGEKF' given as 

i"(t + l)=A(ifc)i"(t) 

4(A)-A,[x"(fc)] 
r'Hk) = 

zi(k)-hilx^>(m 

From the results oftheprecedingsection.the error residual of track 
j at any station s, generated by target I at station 1, is given by 

*"(*) =x"(k) +K'i{k)t»{k) 

Wl(k -HI) = Aik)F*imA^ik) + Q(k) 

(22) 

(23) 

(24) 

(25) 

**"») 

F" - F, 

{1 + [(f.. - F,)/(X.. - X.)f }(X.. - X.f     {1 + [(F" - F,)/(X.. - X,)]')(X.. - X.f 

 Z^ - Zl  

{l-^[(z.7-z,)/(x"-x,)f)(x..-x,f 

F" - Fa 1 

{1 + [(?" - i'.)/(X" - X,)f]{X^> - K,f     {1 + [(?« - F,)/(X.. - X,)]*)(X.. - X,f 

Z'' - z. 

_  {i + [(z.v-z,)/(x..-X3)f)(x..-x,f 

0 
 1  

{i + [(z.v-z,)/(x"-x.)f)(x..-x,f 

0 
 1  

{i + [(zy-Za)/(x..-X3)f[{x..-x,f 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

(26) 



WOLFE AND SPEYER 1147 

10 

8- 

1° 
s f -2 

-10 

ttae(s8o) 

Fig. 3   MGEKF r^dual for matching tracks. 

8it»(seo) 

Fig, 4   MGEKF r»idiial for mismatched trads. 

so ,     ,     , 100 150 
time (860) 

Fig, 5   Filtered MGEKF residual for matchiog tracks. 

covariance 10"*, and measurement noise with covariance 1). TJiese 
estimates (Figs. 5 and 6) clearly show that the mean corresponding 
to a mismatch looks nofliing like that of the matched case. 

After the tracks had been associated between the first two sta- 
tions, algebraic parity tests attempted to associate the targets ob- 
served by the third station relative to those observed by the first 
and second stations. "Bvo plots of residuals generated by the alge- 
braic parity tests appear in Hgs. 7 and 8. Again, the residuals for 

ttne(s9c) 

Fig. 6   Filtered MGEKF reddual for mismatched tracte. 

Fig, 7   Parity test residual for notching tracks. 

Vine(sec) 

Hg.S   Parity test residual for mismatch^ tracks. 

the mismatch are much larger than those correspondingto a correct 
association. 

R>r purposes of comparison, Fig. 9 plote the error statistic de- 
veloped by Bar-Shalom' and Bar-Shalom and Fbrtmann* for both 
a correct and an incorrect track association (using the same data 
sequences that were used by the filters in Figs. 3 and 4). Note 
that the chi-squared error statistic does not change much between 
the matched and mismatched cases. We also noticed that there 
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Fig. 2   llrack assodation procedure. 

Track from 
stations that 
best omtclies 
track 1, st3tionl 

K>Jm = MV(ft)ftJ,j^,[4„(t)M"'(ft)r„^, + V>Hk)] ' (27) 

Gy^^k),4(k),x'^(k)]=       ) , ' (28) 
lG{4(k),x«(k))j 

P'Hk) = {/-K«(ft)G[4(*),2J(*),x"(t)]}M''(A) 

>i[l-Ri (*)d[4 (fc). ziik), i" (fc)] f 

+K'^(*)(r^)-'(t)(K'^)''(ifc) (29) 

where 

r^(/fc)==diag{F,F^) (30) 

The weighted innovations process of the MGEKF, 

^'(k) = ^.tn^.M^'mhluy,^ + V*^(A)] i*^(k)        (31) 

shouM be close to a zero-mean, unit variance white noise sequence 
only if zj and ^1 correspond to tfie same target. 

Algebraic Parity Test 
This test determines if 4, S > * > 2, T > I > 1, Is associated with 

zj andz|, where zj andz| are already known to be associated with 
each other. Suppose thatx" is the state estimate generated by z*! and 
Z2. Then, if zj is associated with the ttackszl and^. 

v{k)f = [A,.<(t,M'^(ft)Aj.,(,, + V'Kk)\  fzi(t) - fc,[i"(*)]} 

(32) 

should be close to a zero mean, unit variance white noise sequence. 
Here, theapproximatemeasurementmatrix AjU^j) is computed in a 
manner similar to the first two rows of the matrix in Eq. (26), but 
referenced to (X„ F„ Z,), the location of station s, instead of the 
location of the first station (Xi,Fi,Z|).The algebraic parity test is 
simply to evaluate the parity equation (32). 

¥.   Example 
The track association algorithm presented in the last section is 

applied to simulation data in this section. Three radar installations 
were located at the positions given by Table 1, and two targets 
were both modeled as nlnth-oiderlineartime-invariantdiscrete-tlme 
systems with the dynamics 

0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 —a 0 0 
0 0 0 0 0 0 0 —a 0 
0 0 0 0 0 0 0 0 —0 

"0 0 o] 
0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

p 0 1_ 

(34) 

and where w is a zero mean Brownian motion process with covari- 
ance Js „ 3 and a = ^ is the time constant for the first-order filters 
that model target maneuvers as colored noise processes. We sample 
this model at intervals of T =0.1 s to generate the discrete time 
dynamics 

x(k + l)=Ax(k)+Bw{k) (35) 

where 

-f 
Jo 

A = e",        B=       e"Bdf,        B[if (Jfc)] = O3 ^, 

£[w{A)w''(l)]=/3,j«« (36) 

x(t)=Fxm + rw(t) (33) 

The targets began the simulation with the initial conditions 

a:i(0) = [50   220,000   30,000  250   -1000  0   0   0   0]'" 

*2(0) = [50,000  20,000  35,000   -250   1000   0   0   0   0]'' 

This configuration corresponds to the two targets initially moving 
directlyto ward eachother.inalinethatalmost passes through station 
2. In the simulation, ttiey pass closest to each other at t =99.2 s. 
Each measurement station measures the angles *J and *j to each 
target at every sample time. These measurements are subject to 
additive, normally distributed zero-mean white measurement noise 
with standard deviation 1 deg. We assume that the measurement 
noise is independentbetween sensors at all stations. Each MOEKF 
begins with the a priori information 

F(0)= [25,000   120,000   32,500   0   0   0   0   0   Of 

F'(0) = 10'x/,^, 

Finally, we assume that the local stations were able to separate their 
measurements from clutter perfectly using methods like those of 
Reid' or Bar-Shalom and Rjrtmann,* or R>rtmann and Bar-Shalom.* 

Hgure 3 plote the weighted innovations of a MOEKF that uses 
measurements from stations 1 and 2 that correspond to the second 
target, whereas Fig. 4 plots the weighted innovations of a MGEKF 
that uses measurements that are mismatched. Note that the inno- 
vations for the correct match appear to be a zero mean white noise 
sequence, whereas the innovationsfor the incorrect match are larger 
and are not white. To betterobserve the behaviorof these sequences, 
their means wereestimatedusingaKalmanfllter(assumingthat each 
element of the weighted innovation of the MOEKF was a measure- 
ment of a process that had integrator dynamics, process noise with 
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Kg. 10   Euclidean norm of error in tracking target 1, 

were several instances where nearly singular matrices were inverted 
in the algorithm that computes the covariance of the difference 
between two local estimates. 

Part of the reason for this difficulty is explained in Fig. 10, a 
plot of the Euclidean norm of flie estimation error. TTie solid line 
corresponds to a MOEKF that uses measurements from both station 
1 and 2, whereas Ihe dotted line is from a filter ttiat only used station 
1 measurements. Any method tliat relies on estimates that only use 
a single station's measurements is subject to a large error. This is 
not a huge concern for linear estimators, but the matrix P'' defined 
by Eq. (29) may not necessarily reflect this error. 

We have also encountered cases where a single station measure- 
ment MGEKF was divergent In the radial direction to the target, but 
no such difficulties have appeared when data from two geograph- 
ically disparate stations was used. One way of generating such a 
diver^nt case was to decrease the maneuver colored noise auto- 
correlation parameter a to ^ or below. We note that values of this 
parameter below ^ correspond to slower maneuvers, a commonly 
encountered situation. 

VI.   Conclusions 
This paper describes residual-based techniques for solving the 

radar track association problem for bearings-only measurements. 
The association between the tracks at two stations can be deter- 
mined by examining the residuals of a bank of MOEKFs. Once this 
association is established, an algebraic parity test can find the cor- 
respondence between tracks at other stations and targets tracked by 
the firet two stations. 

One may Mk why detection filtere are necessary: Why not do 
everything with algebraic parity tests? Although the detection fil- 
tering step is not strictly necessary, it does improve the quality of 
the track associations because the state estimates constructed from 
two widely separated stations are so much more accurate than the 
estimates fiwrn a single station. 

To ensure the quality of the estimates from the MOEKFs, one 
could delay the algebraic parity testing steps for associating tracks 
from additional stations. If these parity tests are replaced with ad- 
ditional detection filter banks until the estimates before and after 
including a new station's measurements are sufficiently close, Aen 
the fidelity of the estimate can be guaranteed. 
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ABSTRACT 

In this paper, we present two statistical techniques 
appropriate for the "validation" of integer ambiguities and 
the detection of cycle slips. The multiple hypothesis 
Wald sequential probdjility ratio test (SPRT) can find the 
conditional probability that each set of integer bi^es under 
consideration is the true bias condition. The multiple 
hypothesis Shiryayev SPRT determines the conditional 
probability thM the integer biases have jumped from the 
nominal bias condition to each member of a collection 
of other bias conditions. Hence, the Wald SPRT is a 
method for validating the integer ambiguities during the 
initial ambiguity resolution, while the Shiryayev SPRT can 
be used to monitor for cycle slips. 

Each of these multiple hypothesis SPRTs (MHSPRTs) 
makes use of two measurement residuals. One is geometric 
combination of the carrier phase me^urements, and 
the other is generated by differencing the carrier phase 
measuremente with code measurements. 

Prior work on cycle slip monitoring has focused solely 

on the detection of the occurrence of a cycle sHp in the 
fastest time, balanced against the probability of issuing a 
false alarm. Once a disruption has occurred, the ambiguity 
resolution process must restart from scratch. The Shiryayev 
SPRT bypasses this problem, as it announces the location 
of the biases after the jump, in addition to the time of the 
cycle slip. 

The calculations for the MHSPRTs are not linked 
to any particular distribution, unlike prior efforts. Only 
the probdjilily density functions of the measurement 
residuals are required. Hence, the techniques can correctly 
compensate for non-Gaussian errors in measurement such 
as multipath. 

For each hypothesis under consideration, the MH- 
SPRTs yield the probability of that hypothesis being the 
correct one. The "state" of the MHSPRT recureions is the 
vector of all of these probabiUties. Information from past 
measurements is embedded in this state. This lecureive, 
probabilistic framework makes it very straightforward to 
add new hypotheses into the set of possible bias conditions 
while retaining information from prior measurements. 

Results from successful simulations and field ex- 
periments are presented, showing the efficacy of our 
techniques. 

1   INTRODUCTION 

This paper describes new techniques for resolving a par- 
ticular problem inherent in determining relative positions 
using the Global Positioning System (GPS). GPS was 
originally designed to determine the positions of antennae 
relative to the Earth, but when one is interested only in 
the positions of two antennae relative to each other, more 
precise "differential GPS" (DGPS) methods may be used. 
The most precise DGPS method is carrier phase DGPS, 
which measures the difference in the phase bf the GPS 
carrier signal between two receivers. To create a relative 
position estimate using carrier phase GPS, the unknown 
number of full cycles of the carrier signal (the "integer 



ambiguity") between the GPS receivers must be found and 
added to the differential phase. Standard least-squares 
estimation techniques generate floating point estimates of 
the integer ambiguity that can narrow the space of cycle 
numbere that must be searched in order to calculate ranges 
accurately. The small number of unknown cycles that 
could correspond to the error in the floating point estimate 
comprise the set of biases from which the integer ambiguity 
resolution algorithm must choose. This paper proposes 
several new algorithms for integer ambiguity resolution 
and cycle slip detection based on two statistical tests - 
the multiple hypothesis Wald probability ratio test and the 
multiple hypothesis Shiryayev probability ratio test. 

There are several methods currently in use for 
resolving the integere, of which Teunissen's least-squares 
ambiguity decorrelation adjustment (LAMBDA) method 
[1, 2] is the most popular. The other commonly used 
integer resolution method is the ambiguity function method 
of Counselman and Gourevitch, and its' variante [3,4, 5]. 
Both of these methods generate estimates of the differential 
position in the process of determining the integers. In 
contrast, the method recently developed by Park, et at [6, 
7] eliminates the differential state from the residual they 
use to determine the integers. We will use this residual in 
our development, since it's independence in time makes it 
valuable for statistical tests, 

AU of these prior methods use either Chi-squared tests 
or F-tests, so they all can potentially benefit from the more 
sophisticated recureive statistical methods described in this 
paper. 

Mertik^ and Rizos [8] have developed a scheme for 
detecting cycle slips in carrier phase GPS measurements. 
In their paper, they apply flie CUSUM test [9, 10] to 
the residual of a Kalman filter in order to detect cycle 
slips. In order for this scheme to work, they must ^sume 

N a dynamical structure for the integere that is somewhat 
artificial. Also, while their method will announce when a 
cycle skip has occurred, it cannot determine the position of 
the new integer bias. Once a cycle slip has been detected by 
their methods, a new integer ambiguity search must begin. 

In contrast, the cycle slip detection mefliods we 
propose in the next sections explicifly announce the new 
integer ambiguities, ^ well ^ the time of the cycle slip. 
The only assumption about cycle slips that we make is an a 
priori probability of a slip, which is far less of a leap than 
constructing dynamics for the disruption. The statistical 
tests we use are also more computationally efficient than 
CUSUM, As with our methods for determining the initial 
integer ambiguities, the residual we analyze requires 
no estimation of the relative position between the GPS 
antennae. 

The paper is summarized as follows: The Shiryayev 
and Wald multiple hypothesis sequential probability ratio 
tests are derived in Section 2. The improved integer 
resolution algorithm is presented in Section 3, Section 4 

presents a residual that enables the designer to increase 
computational efficiency in exchange for longer sampling 
periods. A similar residual, presented in Section 5, 
allows the integer ambiguity associated with a newly 
acquired satellite to be rapidly determined when the other 
integer ambiguities are already known. Section 6 contains 
experimental results using data from simulations and from 
actual GPS measurements. The paper concludes with 
Section 7. 

MULTIPLE HYPOTHESIS SEQUENTIAL PROB- 
ABILITY RATIO TEST 

In this section we present two sophisticated statistical 
tests for determining the most Ukely event from a set of 
hypotheses. The multiple hypothesis Shiryayev sequential 
probability ratio test (MHSSPRT) detects jumps from a 
b^e hyixjthesis to another hypothesis in the set. The 
multiple hypothesis Wald sequential probabiUty ratio test 
(MHWSPRT), which is a sjwcial case of flie MHSSPRT, 
determines the most likely event from a set of hypotheses, 
assuming that the event is true for all time. 

The MHSSPRT and MHWSPRT can be applied 
in place of the Chi-squared test in [6, 7], The 
MHWSPRT yields somewhat better convergence times 
than Chi-squared, and the MHSSPRT allows one to 
monitor for cycle slips. However, the best improvement 
comes when these tests are applied to the enlarged residual 
presented in the next section. 

The material in this section is adapted from the work 
of Malladi and Speyer [11]. 

2.1   RECURSIVE  RELATION  FOR  SHIRYAYEV 
SEQUENTIAL PROBABILITY RATIO TEST 

Suppose that we have a set of different hypotheses 
{Wo,Wi,W2,...Wm}. We wish to know if there is a 
transition from the base hypothesis Wo to any of the other 
hypotheses, and the time that the transition occurs. We 
will derive a recursive formula that at each time step 
computes the probability that a transition has occurred to 
each hypothesis, given the measurement residual sequence 
up to that time. 

Let us define the following notation in this section: 



r(fc) Measurement residual vector at time k. 
R(A) Me^urcment residual history up to time A. 

Ot Time of transition to liypothesis Hi. 
£iik) Event {flj < fe +1}. 
Fiik) PiBi < fc|R(fc)). 

n P(0i < 0). 
Pi A priori probability of transition to 

hypothesis Hi from time ktok + 1. 
/»(•) Probability density function of r given Hi. 
/o() Probability density function of r given Ho. 

m + 1 Number of hypotheses. 
Mk) P(e< < fc + l|R(Jk)). 

We assume that the measurement residual sequence 
{r(k)] is conditionally independent, i.e. the measurement 
residual sequence is independent once a disruption occuis. 
We also assume that the probability distributions of r(ifc) 
given Hi are known for every i. In particular, all of the 
probability density fimctions fi(-) are known. 

We will derive a recursive relation for Fj(fc), i = 
0,1,2,..,,TO. 

Note first that there is a simple relation between ^j(fc) 
andFi(fc)fori>0: 

<f>iik) = Pi0i<k + l\R(k)) (1) 

= Pi0i < fc|R(fc)) + PiSi = k + llR(fc)) (2) 

= Pi$i < k\R(k)) + 

P(0i = k+ l|#i > k,R(fc)) . (3) 

P(0i > k\R(k)) 

= Fi(k)+pi-(l-Fiik)). (4) 

Computing ^o(A) is slightly more complicated. Define the 
set of events {Si{k)} so that £i{k) is flie complement of 
£i{k) for i = 1,2,,.., TO. If we assume that the events 
{£i(k)} are independent of e^h other, the probability of 
no transition before time fc +1 is given by 

^(fc) = i-p(y£i(fc)|R(fc)) 

TO 

=F(n^iWlR(fc)) 

= nm(fc)iR(fc)) 
TO 

=n{i-^(fiWiR(fc))} 
i=l 
m 

=ll{i-pi0i<k+imk))} 
i=l 
m 

=nil-AW} 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
8=1 

0,1,..., TO in the following manner: 

Proof. By induction. We begin by showing that 

Uo)-fMi)) mi) 

ByBayes'Rule, 

Er=o#i(0)-/i(r(l))- 

Fiil) = PiOi < llr(l)) = ^^""f'f^.f ^^ 
P(r(l)) 

_ Pirjim < 1) ■ PjOj < 1) 
P(r(l)) 

EF=o/,Wi))-*(i)-#i(o) 
fi(T(l))-UO) 

(12) 

(13) 

Pivm) = E ^('•(1)1% < 1) • Pi9j < 1) (14) 
3=0 

^i(O) = F(5j < l|no measurements) 
= Pi0j < 1)       Vj. 

Also, 

(15) 

F(y(l)l% < 1) = /,(r(l)) ■ dr(l)       Sfj.        (16) 

Hence, 

^*« FlFfi)) = 
/i(r(l))-dr(l)-#<(D) 

Er=o/i(r(l))-<^i(0) •    (17) 

We   next   show    that   if   we   know    {Fo(fc), 
Pi(fc),...P^(fc)},then 

F<(ft + 1) = 

Uk)-fMk + l)) 
ET=oUk)-fMk + m 

Vfc > 0,    (18) 

Lemma 2.1. Fi{k + I) is a Junction of Fj{k),    j 

which is a function of {Po(fc), Pi(fc),... Wmik)} via the 
relations (4) and (10). At stage k + 1, 

Fiik +1) = P{0i <k + l|R(fc +1)) 

_ F(R(fe + l)\0i < fe +1) • F(gj < fe +1) 
F(R(fc + l)) 

(19) 

F(R(fc +1)) = P(r(fc + l)|R(fc)) ■ F(R(fe))     (20) 

F(R(fc)|#i < ft +1) = 

F(g^<fc + l|R(fc)).p(R(fc)) 
Pi0i<k + 1) ^^^' 



P(r(fc + l)|%<jb + l) = 

fj(r(k + l))-dr(k + l)       Vj.    (22) 

We now use the conditional independence of {r(A;)} to 
write 

Fi(k + 1) = P(0i <k + l|R(fc + 1)) = 

^^l-^^.Pirik + im<k + l). 

P(B.(k)\ei <k + l)-P{ei<k + 1).   (23) 

Substituting from (20) to (22) into (23), we have 

1 
Fiik + 1) 

P(r(*; + l)|R(Jfc))-P(R(fe)) ' 

fi(rik + l))-dr{k + l)- 

P{0i <k + l|R(fc)) ■ P(R(fc)) 
P(0j <k + l) 

Pi0i<k + 1) 
1 

(24) 

P(r(ifc + l)|R(fc))'^*<'"^* + ^^^' 
drik +1) ■ P(ei <k + 1|R(A)) 

/f(r(fc + l)).#(fe-H).#<(fe) 
P(j,(A + l)|R(fc)) 

(25) 

(26) 

Now, 

P(r(jfc + l)|R(fc)) = 5]P(r(ife + 1)1% < A + 1) 

•P(%<fc + l|R(fc)) 
TO 

dr(k + l)-^j(k), 

so we can substitute into (26) to get 

fMk + W-Mk) 

(27) 

(28) 

Fiik + 1) = 
Ef=o/i(r(* + l))-#iW 

Our induction is thus complete. 

(29) 

a 

2.2 RELATION TO A MULTIPLE HYPOTHESIS 
WALD SEQUENTIAL PROBABILITY RATIO 
TEST 

If we restrict ourselves to the case where one hypothesis 
is correct for all time (Le. we will never jump from 
one hypothesis to another), we reduce to the Wald [12] 
sequential probability ratio test: 

Fiik + 1) = 
Fi(k).fMk + l)) 

(30) 

<j>iik) = Fi(k)+pi-(l-Fiik)), i#0 

Uk) = IlT=t{^-Mm ' 
p(u  ,   i%_        Mk)Mr(k+l)) 
r,{k   I   i)       ^™„^,(fc)./,(r(fc+i)) 

Table 1: Summary of Shiryayev sequential probability ratio 
test 

This is quite easy to show.   Because there are no 
hypothesis jumps, ft = 0 for all i, so 

Uk) = Fiik) + ft • (1 - Fi(k)) = Fi(k)        (31) 

for all i > 0. Also, set of events {Ei{k)} is now 
mutually exclusive since the entire measurement sequence 
corresponds to a single hypothesis. Hence 

Uk) = i-p{[jSi(k)nik)) 
i=l 

(32) 

m 

= l-^P(fi(fc)|R(fc)) (33) 

TO 
(34) 

= 1-)JF#) 
i—1 

(35) 

= Foik). (36) 

Thus, the recursive expression from the previous 
subsection becomes 

Fi(* + 1) = 
Mk)-fMk + l)) 

ET=o<l>iik)-fMk + l)) 
Pi(fe)-/i(r(fe + l)) 

ET=oFj(k)-fMk + l)) 

(37) 

(38) 

3   AN IMPROVED METHOD FOR INTEGER AM- 
BIGUITY RESOLUTION 

In this section we propose applying the statistical tests of 
the last section to an enlarged residual that uses both carrier 
phase and code information. 

The method we propose may be used on either single 
or double differenced GPS pseudoranges. For simplicity, 
we will derive the method on double differenced data. 
The conversion of the method to single differenced data is 
straightforward. 

Let us begin with the linearized carrier ph^e and code 



measurement equations: 

VA#(fc)A = VH(fc)5x(A) - AVAN + Vricar (k), 
(39) 

mm = VU(k)SKik) + V»7corfe(*). (40) 

where VTJ^^ and V^^j,^ are independent zero-mean 
Gaussian random sequences with variances Wcor. and 
VVcode. respectively. We can eliminate the tenns 
dependent on Sx by subtracting the code measurement 
from the carrier phase measurement, yielding the following 
relation: 

r^(k) ^ VA^{k)X - Wp(fc) = 

tricar, ik) - ^rj^deik) - AVAN.   (41) 

Note that r^ is an independent Gaussian random sequence 
with mean -AVAN and variance (Wear. + "^ycode)- 

Following the methodology of Paric, et al [6, 7], 
we can find an E(fc) that is a left annihilator of VH(fc), 
Multiplying the carrier phase measurement on the left by 
E(fc), we arrive at 

i^{k) ^ E(Jfc)VA^(Jfc)A = 

E(fc)V»7^r. (k) - AE(fc)VAN.   (42) 

Then r^(fc) is an independent 
Gaussian        random        sequence       with       mean 
-AE(fc)VAN and variance m{k)VYcar.(k)W{k). 

Construct the vector r(fc) as follows: 

r(fc) = Kk) 
ik) 

VA<p(k)X - VSp(k)' 

E(Jb)VA|(fc)A 

Vi7car.(fc) - ^ricodeik) - AVAN 
. mk)Vricarik) - AE(fc)VAN 

(43) 

Then r(fc) is an independent Gaussian random sequence 
with mean mr(VAN, k) and variance Vr(fc) given by 

mr(VAN,fc) = -AVAN 
-AE(fc)VAN 

W^aeik) + Waar.ik) 
Bik)VY^r.ik) 

VVcar.(k)E'^(k) 
B(k)VYcar.(k)B'^(k) 

(44) 

(45) 

Our proposed algorithm for integer ambiguity resolu- 
tion is simply to apply MHWSPRT or MHSSFKT to r(fc), 
with the hypothesis set {Wi,W2,...Hm} containing all 
of the values of VAN that are under consideration. We 
outline it in detail below. 

Algorithm 3.1. 

1. Determim the values of {VANj}, i = 1,2,...,TO 

under consideration as hypotheses. This can be 
done either by taking a set number of integers away 
from the code position estimate for each satellite, 
or by dividing the satellites into an independent and 
dependent set as in Park et al, 

2. Initialize the probabilities Fj(0) to their a priori 
values (For MHWSPRT, usually l/m, where m is 
the number of hypotheses under consideration. For 
MHSSPRT, usually 1 for the base hypothesis and 0 
for the other hypotheses). Set k=0. 

3. Take the (k + l)th measurements VA^(Jb + 1) and 
VSpik +1). 

4. Evaluate /i(r(fc + l))fori = 1,2,.., ,masfollows: 

fiir{k +1)) = exp{rj(A -|- if V^(fc -I- Ijnik + 1)}, 

where 

and 

Tiik +1) = rlik + l) 
Lrf(fc + l)J' 

rlik + l) = 
VA#(fc + 1)A - VSp{k + 1) + AVANi, 

Tl(k + 1) = 

E(fc-|-l)VA#(fc-|-l)A+AE(Jfc-l-l)VANi(fe+1). 

Note that since all the hypotheses under consideration 
have identical covariances, the constant term preced- 
ing the exponent has been eliminated in the above 
expression. 

5. Calculate {F<(fc -|-1)} using {Fi(k)} and {/<(r(fc + 
1)} with either MHWSPRT or MHSSPRT depending 
on whether we are determining the initial ambiguity 
or monitoring for cycle slips. 

6. If we reach a desired threshold with any of the {Fiik+ 
1)}, declare the initial integer ambiguity and begin 
monitoring for cycle slips (MHWSPRT) or declare a 
cycle slip and reset the base hypothesis (MHSSPRT). 

7. Go to step 3. 

For pedagogical reasons, we have used conventional 
LI code pseudoranges in constructing the residual r^(fc). 
It is better in practice to use narmwlane code pseudorange 
combinations instead, because the combination of widelane 
carrier pseudoranges and narrowlane code pseudoranges 
yields a residual that contains no eirors from ionospheric 
delay [13]. 



4   RESOLVING DWEGER AMBIGUITIES SEPA- 
RATELY 

A key problem with the integer ambiguity resolution 
scheme we have presented, as well as with algorithms of 
the type proposed by Park et al. , is that the number of 
hypotheses that must be considered is large, as a result 
of the combinatorial relationship between the number of 
satellites and the number of integers to be examined per 
satellite. We propose a technique to alleviate this problem 
below. 

Our approach attempts to construct residuals such that 
each residual is only affected by the integer ambiguity 
of a single satellite. Then the integer ambiguities of the 
satellites may be determined in parallel, with each parallel 
element making a choice from a small number of possible 
hypotheses. 

Consider the carrier phase and code measurement 
equations again: 

VA#(fc)A VH(fc)   -AI 
VH(fc)     0 

Vfe(Jfc) 
VAN + 

Vt7car.W (46) 

Suppose that we are only interested in the jth integer 
ambiguity VAiVW . If we exclude measurement equations 
with any of the other integer ambiguities, the equation 
drove reduces to 

VA|W)(fc)X 
VSp{k) 

VhW)(fc) 
VH(fc) 

Wx(Jfc) 

^^Vcodeik). 
(47) 

Denote by E^) (k) the left annihilator of the matrix 

Vhtf)(fc)' 
VH(fc) 

Multiplying (47) by B(j)(fc) on the left yields 

rW(fc)i=E«(fe) 

E«)(fc 

VA|W(fc)A 
VSpik) 

VriWrXk) 
^ricode(k). 

E«>(fc) VAiV<J'>A.   (48) 

Hence, rW)(fc) is a noise process, with distribution 
determined by the integer ambiguity VAJV^) and the 
joint distribution of ri^^ and Jicode- The residual r^^^k) 
can thus be tested with a MHSPRT to determine which 
hypothesis is the correct value for VAiVW), independent 
of the other integer ambiguities. 

5   A RESIDUAL FOR RESOLVING THE INTE- 
GERS OF NEWLY ACQUIRED SATELLTTES 

If the integers corresponding to a number of satellites 
have been resolved and a new satellite comes into view, 
resolving the integer ambiguity of the new satellite is 
especially easy. Let VAN e R(*'-i) be the vector of 
resolved integer ambiguities corresponding to the carrier 
phase measurement vector VA<f>{k) £ R(*'-I), The 
carrier phase measurement corresponding to the new 
satellite is VA<p^'^^k), and the integer ambiguity we seek 
to resolve is VAN^^h The measurement equations can 
then be written as 

VA4><-^^k) 
(VA#(fe) + VAN)A VSxik) + 

V^jV(M) ^ ffcar, 

Jtcar,. 
(49) 

Construct a measurement residual r^^^^k) by multiplying 
(49) by E(^) (fc), the left annihilator of the matrix 

H(fc) , 

VA^(**)(jfc) 
(VA#(fc)+VAN)A 

'/car, 

TIcar,. 
+ B<^Hk) -1 

0 
VAN^^l   (50) 

The measurement residual r(^)(fc) is a random noise 
sequence, with distribution determined by VAiV^^^ 
and the joint distribution of ^J^? and ricar.- Taking 
advantage of the small number of possible hypotheses 
under consideration and (he low noise associated with 
r(*^)(fc), a MHWSPKT can quickly determine the correct 
value of the new integer ambiguity VAiV(^). 

6   EXPERIMENTS 

In this section, we evaluate the performance of the methods 
derived in the previous sections. 

6.1   STATIONARY SINGLE ANTENNA EXPERI- 
MENT 

We first constructed an experimental apparatus in which the 
integer ambiguity was known. We connected two Ashtech 
model Z-12 GPS receivers to a single Sensor Systems 
model S67-1575-96 L1/L2 active antenna, so that the 
integer bias was known to be zero for every carrier phase 
measurement. We then compared the results of a Wald 
test using the residual (43) to those using the carrier-only 
residual (42), 



The data sequences we measured contained observa- 
tions of at least seven satellites. To test the algorithm, 
we eliminated some of the measurements, so that there 
were either five or six visible satellites visible. These 
reduced data sets were double differenced and widelaned, 
and then processed by the integer ambiguity resolution 
algorithm. With either residual, the algorithm always 
conectly concluded that the integer biases were zero. We 
have plotted the time history of the maximum valued Fj's 
for both the five and six satellite cases in FiguiBs 1 and 2. 
Note that while the addition of GPS code measurements 
only slightly improves the convergence in the six satellite 
case, the improvement in the five satellite c^e is quite 
significant. 

Cofw«9«K8 coo^sarisoR- n slRs^e ar^etins d^ S els. visB^ 
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Figure 1: Comparison between different residuals: Maxi- 
mum value of Fi vs. time, 5 satellites visible 

test applied to the error residual in (41). Using the same 
original measurement sequence, we reduced the number of 
visible satellites in the data to four before processing them. 
In this case, the correct hypothesis was not determined until 
after 75 measurements, due to a large excursion that one of 
the code measurements took from its mean. In Figure 3 
we plotted the time history of the most probable hypothesis 
(the correct hypothesis number in this case was 14). In 
Figure 4 we plotted the time history of the maximum valued 
Fi- 

Note that when our algorithm assumed that the 
standard deviation of the code measurements was 1 meter, 
the Wald test told us that it was 100% sure that an incorrect 
hypothesis was correct! To avoid this overconfidence 
problem in our algorithm, we increased the standard 
deviation of the code measurements to 2 metere. While this 
did not decrease the time at which the correct hypothesis 
was declared the most probable, it did avoid the problem of 
declaring the wrong hypothesis correct. 
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Figure 2: Comparison between different residuals: Maxi- 
mum value of Fi vs. time, 6 satellites visible 

Finally, we looked at the performance of the Wald 

Figure 3: Most probable hypothesis vs. time, 4 satellites 
visible. The correct hypothesis number is 14 

6.2   DYNAMIC TESTS 

In this subsection, several different techniques for resolving 
integer ambiguity were applied to the same data set. 
The GPS data was collected using a test rig in which 
two Sensor Systems model S67-1575-96 L1/L2 active 
GPS antennae were placed a fixed distance from each 
other (2.3 meters). The test rig was mounted to a car, 
which was driven at moderate speed for several minutes 
while the GPS measuremente were recorded from Ashtech 
model Z-12 GPS receivers. The results of the integer 
ambiguity resolution schemes could be readily verified, 
as filtering of the code measurements using the resolved 
integers generated a distance estimate between the two 
antennae, which would not match the true distance unless 
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Rgure 4: Maximum value of F, vs. time, 4 satellites visible 

the resolved integers were correct. The experimental 
data w^ collected beginning Friday, October 13, 2000 at 
19:22:33.5 PST. 

6.2.1 WALD TEST USING MULTIPLE CARRIER 
MEASUREMENTS AND MULTIPLE CODE 
MEASUREMENTS 

A Wald test using a residual generated by 5 double 
differenced widelane carrier measurements aid 5 dou- 
ble differenced narrowlane code measurements quickly 
resolved the correct integer ambiguities. There were 
five integer values under consideration for each double 
differenced carrier measurement, for a total of 5® = 
3125 different hypotheses. The noise in each of the 
single differenced widelane carrier phase measuremente 
was assumed to be a zero mean Gaussian white noise 
process with a 2^/2 cm. standard deviation. The noise in 
each single differenced widelane code measurement was 
assumed to be a zero mean Gaussian white noise process 
with a s/2 m. standard devi^on. Figure 5 shows the time 
history of the probability of the most probable hypothesis. 

6.2.2 WALD TEST USING A SINGLE CARRIER 
MEASUREMENT AND MULTIPLE CODE 
MEASUREMENTS 

When a Wald test was performed using the residual (48), 
the coirect integer ambiguities were again resolved, albeit 
more slowly. The residual for each integer ambiguity 
used a single double differenced widelane carrier phase 
measurement and as many double differenced narrowlane 
code measurements as were available at each epoch 
(between 5 and 7). There were 9 integer values under 
consideration for each satellite. The noise in the double 
differenced carrier measurement was assumed to be a zero 

Figure 5: Maximum value of Fj vs. time, residual uses 5 
double differenced carrier and 5 double differenced code 
me^urements 

mean Gaussian white noise process with standard deviation 
2^ cm. The noise in each double differenced code 
measurement was assumed to be a zero mean Gaussian 
white noise process with standard deviation 2 m. Figure 
6 shows the time history of the probability of the most 
probable hypothesis for one integer ambiguity, a pattern 
that was typical for all the ambiguities for which we 
searched. The price of the convenience, simplicity and 
low computational cost associated with evalurting the 
ambiguities separately was slower convergence of the Wald 
test. 

Figure 6: Maximumvalueof Fj vs. time, evaluating integer 
ambiguities separately 



6.23 SmRYAYEV TEST USING MULTIPLE CAR- 
RIER MEASUREMENTS AND MULTIPLE 
CODE MEASUREMENTS 

Since there were no cycle slips in the observed data, we 
artificially introduced one into the measurement sequence 
in order to test our cycle slip monitoring scheme. We 
injected the cycle slip into one of the carrier phase 
measurements at the 100th epoch. We then ran a Shiryayev 
test on the same residual as before, using the integere 
resolved by the Wald test as the nominal hypothesis. The 
assumed standard deviation of the carrier measurements 
was increased to 8 cm., as lower values made the test 
too eager to declare a cycle slip. Figure 7 shows the 
time history of the most probable hypothesis. The correct 
hypothesis number is 313 before 100 samples, and it is 312 
after 100 samples. Figure 8 plots the time history of the 
probability of the most probable hypothesis. The Shiryayev 
test detected that a cycle slip h«i occurred immediately, but 
it took 30 samples until it identified the correct hypothesis 
as the most probable one, and an additional 20 samples 
until the probability of that hypothesis was near 100%. 

Figure 7: Most probable hypothesis vs, time, correct value 
is 313 before 100 samples and 312 afterwards 

7   CONCLUSION 

This paper outlines the integer ambiguity problem for 
GPS and describes some new methods for resolving the 
integer ambiguities and for detecting cycle slips. The 
main contribution is the application of the Wald and 
Shiryayev multiple hypothesis sequential probability ratio 
tests (MHSPRTs) to dynamically compute the conditional 
probabilities of members of a set of integer hypotheses be- 
ing correct. Since the MHSPRTs require evaluations of the 
probability density functions of the measurement residuals, 
flie expressions we constructed for the probability density 
functions of several residuals are also of interest. A laige 
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Figure 8: Maximum value of Fi vs. time, cycle sUp occurs 
after 100 samples 

number of experiments, performed on both simulations and 
actual GPS measurements, demonstrates the effectiveness 
of our methods. 

Although there are many other methods for identify- 
ing the initial integer biases and for detecting cycle slips, 
the methods presented here possess several advantages 
over thek peers. Chief among these ^vantages is the 
presentation of information about the integer hypotheses in 
a probabilistic framework, instead of the cumulative sum 
approach used by competing methods. This probabilistic 
framework allows for easy accommodation of events such 
as the introduction of new hypotheses. Other advantages 
of our methods are cycle sUp detection that automatically 
determines the new integer hypothesis after the slip (rather 
than simply announcing that a cycle slip has occurred), 
provisions for the easy accommodation of non-Gaussian 
measurement noises, and efficient computation due to the 
recursive nature of the MHSPRTs. 

The most significant disadvantage of our method is 
that only a finite number of hypotheses may be considered. 
Further, the computational cost increases as the number 
of hypotheses increases. We have presented a residual 
that drastically limits the number of hypotheses under 
consideration, but the price is an increase in the noise of 
the residual. This provides a GPS receiver designer with 
the option of trading between the computational load for 
each epoch versus the number of epochs of data required to 
accurately determine the integer ambiguities. 

In closing, note that our methodology need not 
be exclusive of other techniques for integer ambiguity 
resolution. For instance, a small set of Omissible 
integer ambiguity hypotheses can obtained via Teunissen's 
LAMBDA method [1,2]. These hypotheses could then be 
analyzed using our techniques. In making this set small, 
the LAMBDA method greatly reduces the computational 
time required by our techniques. 
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